Skip to main content
Log in

First Data on Late Cretaceous Terrigenous Deposits of the Upper Part of the Zhuravlevka–Amur Terrane Section in the Lower Amur River Area: Evidence from U/Pb Detrital Zircon Geochronology

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The paper reports data on the age and composition of poorly studied Cretaceous clastic rocks of the Lower Amur River area, which are part of the Zhuravlevka–Amur terrane and are attributed to the Berriasian–Valanginian Komsomolsk series. U/Pb dating of detrital zircons yielded reliable dates of 99 and 90 Ma for the Gorin and Pioneer formations, respectively. Thus, a sedimentary complex with a Late Cretaceous sedimentation age was identified for the first time in the Sikhote-Alin orogenic belt based on detrital zircon geochronology. In composition and detrital zircon age distribution pattern, the studied rocks are more similar to sediments of the upper, Hauterivian–Albian part of the Zhuravlevka–Amur terrane section rather than to those of the lower, Berriasian–Valanginian part. In rocks of the Pioneer Formation, the youngest zircon population with an age of about 90 Ma makes up more than 40% of all dated grains. The main source of detrital material of this age was probably proximal andesites hosting the Mnogovershinnoe deposit and granitoids of the Nizhneamurskii Complex. The source of detritus for sediments of the ∼99 Ma Gorin Formation was probably felsic rocks from the Albian–Cenomanian igneous province of Pacific Asia. The discrepancy between the Late Cretaceous age obtained by us and the paleontologically established Berriasian–Valanginian stratigraphic age of the formations requires additional research. New data on the Late Cretaceous age of the Zhuravlevka–Amur sediments of strike-slip marginal-continental basin requires revision of the geologic evolution of the terrane and the entire Sikhote-Alin orogenic belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. A. Aleksandrov, V. V. Ivin, S. Yu. Budnitskii, and E. Yu. Moskalenko, “Age of granitoids f the Bekchiul pluton (Lower Amur region),” Geodynam. Tectophys. 14 (2), 0694 (2023).

  2. I. A. Alexandrov, V. V. Ivin, S. Yu. Budnitskii, E. Yu. Moskalenko, and V. V. Ivina, “Stages and features of Late Cretaceous granitoid magmatism in the northern part of the East Sikhote-Alin volcanoplutonic belt (Lower Amur region),” Geodynamic Evolution of Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent): Proc. Conf., Irkutsk, Russia, 2023 (IZK SO RAN, Irkutsk, 2023), Vol. 21, pp. 11–13 [in Russian].

  3. M. V. Arkhipov, I. P. Voinova, A. V. Kudymov, A. Yu. Peskov, Sh. Otoh, M. Nagata, V. V. Golozubov, and A. N. Didenko, “Comparative analysis of Aptian–Albian rocks of the Kema and Kiselevka–Manoma terranes: geochemistry, geochronology, and paleomagnetism,” Russ. J. Pac. Geol. 13 (3), 239–264 (2019).

    Article  Google Scholar 

  4. Geodynamics, Magmatism, and Metallogeny of East Russia Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  5. State Geological Map of the Russian Federation on a Scale 1 : 200 000. Second Edition. Nikolaevskaya Series, sheet N-54-XXI: Explanatory Note (VSEGEI, Moscow, 2013) [in Russian].

  6. State Geological Map of the Russian Federation. Scale 1 : 1 000 000 (Third Generation). Far East Series. Sheet N-54. Nikolaevsk-on-Amur: Explanatory Note (VSEGEI, St. Petersburg, 2016) [in Russian].

  7. A. N.Didenko, Sh. Otoh, A. V. Kudymov, A. Yu. Peskov, M. V. Arkhipov, Yu. Miyake, and M. Nagata, “Tectonic implications: zircon age of sedimentary rocks from Khabarovsk, Samarka, and Zhuravlevka-Amur terranes in the northern Sikhote-Alin Orogenic Belt,” Russ. J. Pac. Geol. 14 (1), 1–19 (2020).

    Article  Google Scholar 

  8. A. A. Kozlov, S. V. Beletskaya, and V. D. Ovchinninskii, Geological Map of the USSR on a Scale 1 : 200 000. The Lower Amur Series. Sheet N-54-XIV, XV (Moscow, 1981) [in Russian].

  9. A. V. Kudymov, Sh. Otoh, M. V. Arkhipov, A. Yu. Peskov, S. V. Zyabrev, M. Nagata, and A. N. Didenko, “The LA–ICP–MS U–Pb ages of detrital zircons from sedimentary rocks of the Komsomolskaya Group (northern Sikhote-Alin),” Russ. J. Pac. Geol. 16 (5), 443–454 (2022).

    Article  Google Scholar 

  10. A. Yu. Lebedev, I. A. Alexandrov, and V. V. Ivin, “New U/Pb data on Cretaceous magmatic rocks of the Komsomolsk ore district (Middle Amur region),” Dokl. Earth Sci. (in press).

  11. A. I. Malinovsky and V. V. Golozubov, “Structure, composition, and depositional environments of the Lower Cretaceous rocks of the Zhuravlevka Terrane, Central Sikhote Alin,” Lithol. Miner. Resour. 47 (4), 399–424 (2012).

    Article  Google Scholar 

  12. A. I. Malinovsky, V. V. Golozubov, and S. A. Medvedeva, “The composition, source, and depositional environment of lower Cretaceous sediments in northern Sikhote-Alin,” Russ. J. Pac. Geol. 16 (6), 560–580 (2022).

    Article  Google Scholar 

  13. F. J. Pettijohn, Sand and Sandstone (Springer-Verlag, 1973).

    Book  Google Scholar 

  14. E. A. Sin’kova, O. V. Petrov, A. I. Khanchuk, S. S. Shevchenko, V. V. Snezhko, V. O. Khalenev, I. N. Buchnev, and S. A. Sergeev, “Geochronological atlas–guidebook of main lithotectonic complexes of Russia—Basic information resource for the geological branch of the country,” Regional. Geol. Metallogen., No. 90, 5–14 (2022). http://geochron.vsegei.ru/

  15. S. R. Taylor and S. M. McLennan, The Continental Crust: its Composition and Evolution (Blackwell, 1985).

    Google Scholar 

  16. A. I. Khanchuk, A. V. Grebennikov, and V. V. Ivanov, “Albian–Cenomanian orogenic belt and igneous province of Pacific Asia,” Russ. J. Pac. Geol. 13 (3), 187–219 (2019).

    Article  Google Scholar 

  17. V. D. Shutov, “Classification of sandstones,” Litol. Polezn. Iskop., No. 5, 86–102 (1967).

  18. Ya. E. Yudovich and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  19. H. Bahlburg and N. A. Dobrzinski, “Review of the chemical index of alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions,” Geol. Soc. London, Spec. Publ. 36, 81–92 (2011).

    Article  Google Scholar 

  20. W. V. Boynton, “Cosmochemistry of the rare earth elements: meteorite studies,” Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1985), pp. 115–1522.

    Google Scholar 

  21. T. Furukawa, A New Evaluation Protocol for Detrital Zircon: BAD-ZUPA (2020). https://doi.org/10.5281/zenodo.4138657

  22. S. E. Jackson, N. J. Pearson W. L. Griffin, and E. Belousova, “The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology,” Chem. Geol. 211, 47–69 (2004).

    Article  CAS  Google Scholar 

  23. A. I. Khanchuk, I. V. Kemkin, and N. N. Kruk, “The Sikhote-Alin Orogenic Belt, Russian South East: terranes and the formation of continental lithosphere based on geological and isotopic data,” J. Asian Earth Sci. 120, 117–138 (2016).

    Article  Google Scholar 

  24. K. Liu, W. Xiao, S. Wilde, J. Zhang, I. Alexandrov, S. Kasatkin, and M. Ge, “Syn-subduction strike-slip faults shape an accretionary orogen and its provenance signatures: insights from NE Asia during the Late Jurassic to Early Cretaceous,” Tectonics 40 (7) (2021).

  25. H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lutites,” Nature 299, 715–717 (1982).

    Article  CAS  Google Scholar 

  26. A. Parker, “An index of weathering for silicate rocks,” Tectonics 107 (6), 501–504 (1970).

    CAS  Google Scholar 

  27. J. E. Saylor and K. E. Sundell, “Quantifying comparison of large detrital geochronology data sets,” Geosphere 12, 203–220 (2016).

    Article  Google Scholar 

  28. G. R. Sharman, J. P. Sharman, and Z. Sylvester, “DetritalPy: a Python-based toolset for visualizing and analysing detrital geothermochronologic data,” Depositional Record 4, 202–215 (2018).

    Article  Google Scholar 

  29. P. Vermeesch and R. Isoplot, “A free and open toolbox for geochronology,” Geosci. Front. 9, 1479–1493 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 2-17-00198, https://rscf.ru/project/22-17-00198/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Alexandrov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Recommended for publishing by A.I. Khanchuk

Translated by M. Bogina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, I.A., Malinovsky, A.I., Ivin, V.V. et al. First Data on Late Cretaceous Terrigenous Deposits of the Upper Part of the Zhuravlevka–Amur Terrane Section in the Lower Amur River Area: Evidence from U/Pb Detrital Zircon Geochronology. Russ. J. of Pac. Geol. 18, 263–272 (2024). https://doi.org/10.1134/S1819714024700039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714024700039

Keywords:

Navigation