Skip to main content
Log in

Surface Waves Along the Interface of Stably Stratified Liquids

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The problem of the propagation of traveling surface waves across the interface between two stably stratified, inviscid, unlimited, semi-infinite liquid media with different densities is considered. Dispersion relations for the wave motions and expressions for the fluxes of matter and energy in both liquids are obtained and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Gemmrich and A. Monahan, J. Phys. Oceanogr. 51 (2), 269 (2021). https://doi.org/10.1175/JPO-D-20-0073.1

    Article  ADS  Google Scholar 

  2. Yu. D. Chashechkin and V. E. Prokhorov, Fiz.-Khim. Kinet. Gaz. Din. 23 (5), 16 (2022). https://doi.org/10.33257/PhChGD.23.5.1011. http://chemphys.edu.ru/issues/2022-23-5/articles/1011/

  3. Yu. V. Tunik, Fiz.-Khim. Kinet. Gaz. Din. 23 (5), 1 (2022). https://doi.org/10.33257/PhChGD.23.5.1010. http://chemphys.edu.ru/issues/2022-23-5/articles/1010/

  4. M. N. Il’icheva, Fiz.-Khim. Kinet. Gaz. Din. 22 (4), 65 (2021). https://doi.org/10.33257/PhChGD.22.4.934. http://chemphys.edu.ru/issues/2021-22-4/articles/934/

  5. C. Zeng, C. Zhao, and F. Zeighami, Earthquake Eng. Struct. Dyn. 51 (5), 1201 (2022). https://doi.org/10.1002/eqe.3611

    Article  Google Scholar 

  6. H. Lamb, Hydrodynamics, 6th ed. (Cambridge Univ. Press, Cambridge, 1932).

    Google Scholar 

  7. N. E. Kochin, I. A. Kibel, and N. V. Roze, Theoretical Hydromechanics (Wiley, Chichester, 1964).

    Google Scholar 

  8. W. Thomson, Philos. Mag. 42, 362 (1871). https://doi.org/10.1080/14786447108640585

    Article  Google Scholar 

  9. G. G. Stokes, Trans. Cambridge Philos. Soc. 8, 441 (1847).

    Google Scholar 

  10. Yu. A. Stepanyants and A. L. Fabrikant, Sov. Phys.-Usp. 32, 783 (1989). https://doi.org/10.1070/PU1989v032n09ABEH002757

    Article  ADS  Google Scholar 

  11. A. M. Fridman, Phys.-Usp. 51, 213 (2008). https://doi.org/10.1070/PU2008v051n03ABEH006470

    Article  Google Scholar 

  12. N. M. Zubarev and E. A. Kuznetsov, J. Exp. Theor. Phys. 119 (1), 169 (2014). https://doi.org/10.1134/S1063776114060077

    Article  ADS  Google Scholar 

  13. M. H. K. Siddiqui and M. R. Loewen, J. Fluid Mech. 573, 417 (2007). https://doi.org/10.1017/S0022112006003892

    Article  ADS  Google Scholar 

  14. A. A. Abrashkin and E. I. Yakubovich, Vortex Dynamics in Lagrangian Description (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  15. D. F. Belonozhko and A. V. Kozin, Fluid Dyn. 46 (2), 270 (2011). https://doi.org/10.1134/S0015462811020098

    Article  ADS  MathSciNet  Google Scholar 

  16. J. W. Miles, J. Fluid Mech. 6 (4), 583 (1959). https://doi.org/10.1017/S0022112059000842

    Article  ADS  MathSciNet  Google Scholar 

  17. M. A. Weissman, Philos. Trans. R. Soc. London, Ser. A 290 (1377), 639 (1979). https://doi.org/10.1098/rsta.1979.0019

    Article  Google Scholar 

  18. D. F. Belonozhko and A. A. Ochirov, Tech. Phys. 63 (5), 653 (2018). https://doi.org/10.1134/S106378421805002X

    Article  Google Scholar 

  19. K. Yousefi, F. Veron, and M. P. Buckley, J. Fluid Mech. 895, A15 (2020). https://doi.org/10.1017/jfm.2020.276

    Article  ADS  Google Scholar 

  20. L. H. Wang et al., J. Fluid Mech. 893, A21 (2020). https://doi.org/10.1017/jfm.2020.246

    Article  Google Scholar 

  21. S. O. Shiryaeva, A. I. Grigor’ev, and L. S. Yakovleva, Tech. Phys. 60 (12), 1772 (2015). https://doi.org/10.1134/S1063784215120208

    Article  Google Scholar 

  22. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961).

    Google Scholar 

  23. H. D. I. Abarbanel et al., Philos. Trans. R. Soc. London, Ser. A 318 (1543), 349 (1986). https://doi.org/10.1098/rsta.1986.0078

    Article  Google Scholar 

  24. W. L. Jones, J. Fluid Mech. 34 (3), 609 (1968). https://doi.org/10.1017/S0022112068002119

    Article  ADS  Google Scholar 

  25. G. K. Batchelor and J. M. Nitsche, J. Fluid Mech. 227, 357 (1991). https://doi.org/10.1017/S0022112091000150

    Article  ADS  Google Scholar 

  26. G. K. Batchelor and J. M. Nitsche, J. Fluid Mech. 252, 419 (1993). https://doi.org/10.1017/S0022112093003829

    Article  ADS  MathSciNet  Google Scholar 

  27. O. Praud, A. M. Fincham, and J. Sommeria, J. Fluid Mech. 522, 1 (2005). https://doi.org/10.1017/S002211200400120X

    Article  ADS  MathSciNet  Google Scholar 

  28. S. P. Jaiswal and M. Gavara, Int. Commun. Heat Mass Transfer 134, 105773 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105773

  29. L. Štrubelj and I. Tiselj, Int. J. Numer. Methods Eng. 85 (5), 575 (2011). https://doi.org/10.1002/nme.2978

    Article  Google Scholar 

  30. N. I. Makarenko and Z. L. Mal’tseva, Fluid Dyn. 44 (2), 278 (2009). https://doi.org/10.1134/S0015462809020124

    Article  ADS  MathSciNet  Google Scholar 

  31. Y. Xue et al., Ocean Eng. 266, 112962 (2022). https://doi.org/10.1016/j.oceaneng.2022.112962

  32. A. A. Ochirov and Yu. D. Chashechkin, Izv. Atmos. Ocean. Phys. 58 (5), 450 (2022). https://doi.org/10.1134/S0001433822050085

    Article  Google Scholar 

  33. Yu. D. Chashechkin and A. A. Ochirov, Axioms 11 (8), 402 (2022). https://doi.org/10.3390/axioms11080402

    Article  Google Scholar 

  34. Yu. D. Chashechkin, Axioms 10 (4), 286 (2021). https://doi.org/10.3390/axioms10040286

    Article  Google Scholar 

  35. D. D. Joseph, Arch. Ration. Mech. Anal. 51 (4), 295 (1973). https://doi.org/10.1007/BF00250536

    Article  Google Scholar 

  36. A. A. Ochirov, Uch. Zap. Fiz. Fak. Mosk. Univ., No. 6, 1860301 (2018). http://uzmu.phys.msu.ru/file/2018/6/1860301.pdf

  37. B. G. Levich, Physico-Chemical Hydrodynamics, 2nd ed. (GIFML, Moscow, 1959) [in Russian].

    Google Scholar 

  38. L. F. McGoldrick, J. Fluid Mech. 52 (4), 725 (1972). https://doi.org/10.1017/S0022112072002733

    Article  ADS  Google Scholar 

  39. A. Nayfeh and S. Hassan, J. Fluid Mech. 48 (3), 463 (1971). https://doi.org/10.1017/S0022112071001708

    Article  ADS  MathSciNet  Google Scholar 

  40. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon, Oxford, 1987).

  41. Yu. D. Chashechkin, Math. Modell. Nat. Phenom. 13 (2), 17 (2018). https://doi.org/10.1051/mmnp/2018020

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-19-00598 “Hydrodynamics and energy of a drop and capillary jets: formation, motion, decay, and the interaction with the contact surface”), https://rscf.ru/project/19-19-00598/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. D. Chashechkin or A. A. Ochirov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chashechkin, Y.D., Ochirov, A.A. & Lapshina, K.Y. Surface Waves Along the Interface of Stably Stratified Liquids. Tech. Phys. (2024). https://doi.org/10.1134/S1063784224700439

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1063784224700439

Keywords:

Navigation