Skip to main content
Log in

Stellar Wind and the Efficiency of Plasma Radio Emission from Exoplanets

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the results of our study of the influence of stellar activity on the efficiency of the plasma radio emission generation mechanism and the properties of this emission in the atmospheres of exoplanets with a weak magnetic field. The plasma generation mechanism can be efficiently realized in the case where the Langmuir frequency exceeds the electron gyrofrequency, and the electron cyclotron maser is inefficient. This mechanism, which depends significantly on plasma parameters, suggests the generation of plasma (quasi-static) waves by energetic electrons followed by their conversion into electromagnetic radiation. The stellar wind, depending on its intensity, can modify significantly the plasmasphere of an exoplanet and change its parameters. Using the interaction of the exoplanet HD 189733b with a stellar wind of various intensities from the central star as an example, we show that the plasma mechanism can be realized at any stellar wind intensity, only the requirements for the parameters of the plasma mechanism change. In particular, the plasma wave energy density needed to generate a radio flux accessible to detection by modern radio-astronomical means changes, and its frequency range changes. The latter will allow the detected radio emission to be used as an indicator of the activity of the parent star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. B. Burkhart and A. Loeb, Astrophys. J. 849, L10 (2017).

  2. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Nauka, Moscow, 1967; Addison Wesley, London, 1970).

  3. J.-M. Grießmeier, S. Preusse, M. Khodachenko, et al., Planet. Space Sci. 55, 618 (2007a).

  4. J.-M. Grießmeier, P. Zarka, and H. Spreeuw, Astron. Astrophys. 475, 359 (2007b).

  5. J. H. Guo, Astrophys. J. 733, 98 (2011).

  6. M. Jardine and A. C. Cameron, Astron. Astrophys. 490, 843 (2008).

  7. D. B. Melrose, G. A. Dulk, and R. G. Hewitt, J. Geophys. Res. 89, 897 (1984).

  8. M. Narang, P. Manoj, C. H. Ishwara Chandra, J. Lazio, Th. Henning, M. Tamura, B. Mathew, N. Ujwal, and P. Mandal, Mon. Not. R. Astron. Soc. 500, 4818 (2021).

  9. M. Narang, A. V. Oza, K. Hakim, P. Manoj, R. K. Banyal, and D. P. Thorngren, Astrophys. J. 165, 1 (2023).

  10. J. D. Nichols and S. E. Milan, Mon. Not. R. Astron. Soc. 461, 2353 (2016).

  11. M. S. Rumenskikh, I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, I. B. Miroshnichenko, A. G. Berezutsky, and L. Fossati, Astrophys. J. 927, 238 (2022).

  12. C. Selhorst, C. L. Barbosa, P. J. A. Simões, A. A. Vidotto, and A. Valio, Astrophys. J. 895, 62 (2020).

  13. V. E. Shaposhnikov, G. V. Litvinenko, V. V. Zaitsev, V. V. Zakharenko, and A. A. Konovalenko, Astron. Astrophys. 645, A31 (2021).

  14. V. N. Tsytovich, Theory of Turbulent Plasma (Atomizdat, Moscow, 1971; Consultants Bureau New York, 1977).

  15. S. Turnpenney, J. D. Nichols, G. A. Wynn, and M. R. Burleigh, Astrophys. J. 854, 72 (2018).

  16. S. Turnpenney, J. D. Nichols, G. A. Wynn, and X. Jia, Mon. Not. R. Astron. Soc. 494, 5044 (2020).

  17. A. A. Vidotto and J. Donati, Astron. Astrophys. 602, A39 (2017).

  18. C. Weber, N. V. Erkaev, V. A. Ivanov, P. Odert, J.-M. Grießmeier, L. Fossati, H. Lammer, and H. O. Rucker, Mon. Not. R. Astron. Soc. 480, 3680 (2018).

  19. C. Weber, H. Lammer, I. F. Shaikhislamov, J. M. Chadney, M. L. Khodachenko, J.-M. Grießmeier, H. O. Rucker, C. Vocks, et al., Mon. Not. R. Astron. Soc. 469, 3505 (2017).

  20. C. S. Wu and L. C. Lee, Astrophys. J. 230, 621 (1979).

  21. V. V. Zaitsev and A. V. Stepanov, Astron. Astrophys. 45, 135 (1975).

  22. V. V. Zaitsev and A. V. Stepanov, Solar Phys. 88, 297 (1983).

  23. V. V. Zaitsev and A. V. Stepanov, Radiophys. Quantum Electron. 59, 867 (2016).

  24. V. V. Zaitsev and V. E. Shaposhnikov, Mon. Not. R. Astron. Soc. 513, 4082 (2022).

  25. P. Zarka, Planet. Space Sci. 55, 598 (2007).

  26. V. V. Zheleznyakov, Radiation in Astrophysical Plasmas (Springer, Dordrecht, 1996).

  27. V. V. Zheleznyakov, V. V. Zaitsev, and E. Ya. Zlotnik, Astron. Lett. 38, 589 (2012).

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 23-22-00014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Shaposhnikov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, V.V., Shaposhnikov, V.E., Khodachenko, M.L. et al. Stellar Wind and the Efficiency of Plasma Radio Emission from Exoplanets. Astron. Lett. 50, 81–91 (2024). https://doi.org/10.1134/S1063773724600188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773724600188

Keywords:

Navigation