Skip to main content
Log in

Kinetic Model of the Effect of the Stellar Wind on the Extended Hydrogen Atmosphere of the Exoplanet π Men c

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

In this work, the kinetic model of aeronomy of the upper atmosphere of an exoplanet is extended by including the effect of stellar wind plasma on the extended hydrogen corona of a hot sub-Neptune. For this purpose, the precipitation of high-energy protons and hydrogen atoms into planetary atmospheres was studied using previously developed kinetic Monte Carlo models. The kinetic model was adapted to the upper atmospheres of hot sub-Neptunes, which made it possible to calculate the energy deposition rate of stellar wind plasma in the planetary corona and to refine estimates of the rate of non-thermal loss of the atmosphere caused by the stellar wind of the parent star. Calculations carried out for the hot sub-Neptune π Men c showed that the energy of the flux of energetic neutral hydrogen atoms (ENA H) penetrating into the atmosphere, formed during the charge exchange of stellar wind protons with thermal atoms of the hydrogen corona, mainly goes to heating the hydrogen corona of the hot exoplanet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. F. Fressin, G. Torres, D. Charbonneau, S. T. Bryson, et al., Astrophys. J. 766, 81 (2013).

    Article  ADS  Google Scholar 

  2. J. E. Owen and A. P. Jackson, Mon. Not. R. Astron. Soc. 425, 2931 (2012).

    Article  ADS  Google Scholar 

  3. E. D. Lopez, J. J. Fortney, and N. Miller, Astrophys. J. 761, 59 (2012).

    Article  ADS  Google Scholar 

  4. S. Ginzburg, H. E. Schlichting, and R. Sari, Astrophys. J. 825, 29 (2016).

    Article  ADS  Google Scholar 

  5. B. J. Fulton, E. A. Petigura, A. W. Howard, H. Isaacson, et al., Astrophys. J. 154, 109 (2017).

    Google Scholar 

  6. J. E. Owen, Ann. Rev. Earth Planet. Sci. 47, 67 (2019).

    Article  ADS  Google Scholar 

  7. J. E. Owen, I. F. Shaikhislamov, H. Lammer, L. Fossati, and M. L. Khodachenko, Space Sci. Rev. 216, 129 (2020).

    Article  ADS  Google Scholar 

  8. D. V. Bisikalo, V. I. Shematovich, P. V. Kaygorodov, and A. G. Zhilkin, Phys. Usp. 64, 747 (2021).

    Article  ADS  Google Scholar 

  9. V. Van Eylen, C. Agentoft, M. S. Lundkvist, H. Kjeldsen, et al., Mon. Not. R. Astron. Soc. 479, 4786 (2018).

    Article  ADS  Google Scholar 

  10. A. Vidal-Madjar, A. Lecavelier des Etangs, J. M. Désert, G. E. Ballester, et al., Nature (London, U.K.) 422 (6928), 143 (2003).

    Article  ADS  Google Scholar 

  11. A. Lecavelier Des Etangs, D. Ehrenreich, A. Vidal-Madjar, G. E. Ballester, et al., Astron. Astrophys. 514, A72 (2010).

    Article  Google Scholar 

  12. J. R. Kulow, K. France, J. Linsky, and R. O. Parke Loyd, Astrophys. J. 786, 132 (2014).

    Article  ADS  Google Scholar 

  13. V. Bourrier, A. L. Des Etangs, D. Ehrenreich, J. Sanz-Forcada, et al., Astron. Astrophys. 620, A147 (2018).

    Article  Google Scholar 

  14. A. García Muñoz, L. Fossati, A. Youngblood, N. Nettelmann, et al., Astrophys. J. Lett. 907, L36 (2021).

    Article  ADS  Google Scholar 

  15. M. Lampón, M. López-Puertas, L. M. Lara, A. Sánchez-López, et al., Astron. Astrophys. 636, A13 (2020).

    Article  Google Scholar 

  16. V. I. Shematovich and M. Ya. Marov, Phys. Usp. 61, 217 (2018).

    Article  ADS  Google Scholar 

  17. A. A. Avtaeva and V. I. Shematovich, Solar Syst. Res. 55, 150 (2021).

    Article  ADS  Google Scholar 

  18. A. A. Avtaeva and V. I. Shematovich, Astron. Rep. 66, 1254 (2022).

    Article  ADS  Google Scholar 

  19. A. A. Avtaeva and V. I. Shematovich, Solar Syst. Res. 56, 67 (2022).

    Article  ADS  Google Scholar 

  20. D. V. Bisikalo, P. Kaygorodov, D. Ionov, V. I. Shematovich, H. Lammer, and L. Fossati, Astrophys. J. 764, 19 (2013).

    Article  ADS  Google Scholar 

  21. T. Matsakos, A. Uribe, and A. Königl, Astron. Astrophys. 578, A6 (2015).

    Article  ADS  Google Scholar 

  22. I. Pillitteri, A. Maggio, G. Micela, S. Sciortino, S. J. Wolk, and T. Matsakos, Astrophys. J. 805, 52 (2015).

    Article  ADS  Google Scholar 

  23. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, K. G. Kislyakova, et al., Astrophys. J. 832, 173 (2016).

    Article  ADS  Google Scholar 

  24. J. E. Owen, R. A. Murray-Clay, E. Schreyer, H. E. Schlichting, et al., Mon. Not. R. Astron. Soc. 518, 4357 (2023).

    Article  ADS  Google Scholar 

  25. V. I. Shematovich, D. V. Bisikalo, J. C. Gérard, and B. Hubert, Astron. Rep. 63, 835 (2019).

    Article  ADS  Google Scholar 

  26. V. I. Shematovich, D. V. Bisikalo, and A. G. Zhilkin, Astron. Rep. 65, 203 (2021).

    Article  ADS  Google Scholar 

  27. C. X. Huang, J. Burt, A. Vanderburg, M. N. Guenther, et al., Astrophys. J. Lett. 868, L39 (2018).

    Article  ADS  Google Scholar 

  28. D. Gandolfi, O. Barragán, J. H. Livingston, et al., Astron. Astrophys. 619, L10 (2018).

    Article  ADS  Google Scholar 

  29. A. García Muñoz, A. Youngblood, L. Fossati, D. Gandolfi, J. Cabrera, and H. Rauer, Astrophys. J. Lett. 888, L21 (2020).

    Article  ADS  Google Scholar 

  30. I. F. Shaikhislamov, L. Fossati, M. L. Khodachenko, H. Lammer, et al., Astron, Astrophys. 639, A109 (2020).

    Article  Google Scholar 

  31. J. S. Halekas, R. J. Lillis, D. L. Mitchell, T. E. Cravens, et al., Geophys. Res. Lett. 42, 8901 (2015).

    Article  ADS  Google Scholar 

  32. V. I. Shematovich, Solar Syst. Res. 44, 96 (2010).

    Article  ADS  Google Scholar 

  33. V. I. Shematovich, D. V. Bisikalo, C. Dieval, S. Barabash, et al., J. Geophys. Res. 116, A11320 (2011).

  34. V. I. Shematovich and D. V. Bisikalo, Astron. Rep. 64, 863 (2020).

    Article  ADS  Google Scholar 

  35. A. A. Vidotto and A. Cleary, Mon. Not. R. Astron. Soc. 494, 2417 (2020).

    Article  ADS  Google Scholar 

  36. S. Carolan, A. A. Vidotto, C. Villarreal D’Angelo, and G. Hazra, Mon. Not. R. Astron. Soc. 500, 3382 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-22-00909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Avtaeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avtaeva, A.A., Shematovich, V.I. Kinetic Model of the Effect of the Stellar Wind on the Extended Hydrogen Atmosphere of the Exoplanet π Men c. Astron. Rep. 67, 979–990 (2023). https://doi.org/10.1134/S1063772923100025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923100025

Keywords:

Navigation