Skip to main content
Log in

Dust Particles in Space: Opportunities for Experimental Research

  • Published:
Astronomy Reports Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2023

This article has been updated

Abstract

Space dust and dusty (complex) plasma are one of the most common manifestations of matter in space. Non-atmospheric bodies of the Solar System, such as the Moon, asteroids, comets, some satellites of the planets, are directly affected by external factors of outer space—solar electromagnetic radiation, interplanetary plasma flows, cosmic rays, micrometeors. Under the influence of these factors, regolith is formed on the surface of bodies during geological epochs. Under the influence of impacts of high-speed micrometeors, dust particles of regolith scatter at different speeds. Most of them return to the surface, but some form dust clouds or lose their gravitational connection with the parent body. Under the action of solar radiation, the surface acquires an electric charge, and dust particles under certain conditions can break away from the regolith surface and levitate. Observational evidence of such dynamic phenomena has been recorded on the Moon and on some asteroids. The study of the physical processes responsible for the activation of dust particles and their dynamics is of great interest for fundamental science and practical purposes. The article discusses the main processes occurring under the influence of outer space factors on regolith, as a result of which dust particles move and a near-surface plasma-dust exosphere is formed. Unresolved issues are discussed. Methods and means of laboratory modeling in studying the activation and dynamics of dust particles are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Change history

REFERENCES

  1. R. J. Trumpler, Publ. Astron. Soc. Pacif. 42, 214 (1930).

    Article  ADS  Google Scholar 

  2. R. Z. Sagdeev, J. Blamont, A. A. Galeev, V. I. Moroz, V. D. Shapiro, V. I. Shevchenko, and K. Szego, Nature (London, U. K.) 321, 259 (1986).

    Article  ADS  Google Scholar 

  3. J. E. Colwell, S. Batiste, M. Horányi, S. Robertson, and S. Sture, Rev. Geophys. 45, 2006 (2007).

    Article  ADS  Google Scholar 

  4. C. M. Katzan and J. L. Edwards, NASA-CR-4404 E‑6145, Project: RTOP 506-41-41, 19920002733 (1991).

  5. J. R. Gaier, NASA/TM-2005-213610/REV1 E-15071-1/REV 1, 20070021819 (2005). http://www.sti.nasa.gov.

  6. E. Kallio, S. Dyadechkin, P. Wurz, and M. Khodachenko, Planet. Space Sci. 166, 9 (2019).

    Article  ADS  Google Scholar 

  7. P. O’Brien, S. Byrne, and T. J. Zega, in Proceedings of the 50th Lunar and Planetary Science Conference 2019, LPI Contrib. No. 2132 (2019), p. 2003. https://www.hou.usra.edu/, meetings/lpsc2019/pdf/2003.pdf.

  8. S. I. Popel and L. M. Zelenyi, J. Plasma Phys. 80, 885 (2014).

    Article  ADS  Google Scholar 

  9. S. I. Popel, L. M. Zelenyi, A. P. Golub’, and A. Y. Dubinskii, Planet. Space Sci. 156, 71 (2018).

    Article  ADS  Google Scholar 

  10. M. Horányi, Z. Sternovsky, M. Lankton, C. Dumont, et al., Space Sci. Rev. 185, 93 (2014).

    Article  ADS  Google Scholar 

  11. M. Horányi, J. R. Szalay, S. Kempf, J. Schmidt, E. Grün, R. Srama, and Z. Sternovsky, Nature (London, U.K.) 522, 324 (2015).

    Article  ADS  Google Scholar 

  12. E. Grün, H. A. Zook, H. Fechtig, and R. H. Giese, Icarus 62, 244 (1985).

    Article  ADS  Google Scholar 

  13. E. Grün, M. Horányi, and Z. Sternovsky, Planet. Space Sci. 59, 1672 (2011).

    Article  ADS  Google Scholar 

  14. K. P. Florenskii and A. V. Ivanov, in Cosmic Chemistry of the Moon and Planets, Collection of Articles (Nauka, Moscow, 1975), p. 439 [in Russian].

    Google Scholar 

  15. H. A. Zook, Planet. Space Sci. 23, 1391 (1975).

    Article  ADS  Google Scholar 

  16. D. E. Brownlee, W. Bucher, P. Hodge, W. Bucher, and P. Hodge, NASA-SP-284 LC-70-181874, 19720019081 (1972).

  17. Y. Liu and L. A. Taylor, Planet. Space Sci. 59, 1769 (2011).

    Article  ADS  Google Scholar 

  18. P. Wurz, U. Rohner, J. A. Whitby, C. Kolb, H. Lammer, P. Dobnikar, and J. A. Martın-Fernández, Icarus 191, 486 (2007).

    Article  ADS  Google Scholar 

  19. W. C. Feldman, D. J. Lawrence, R. C. Elphic, B. L. Barraclough, S. Maurice, I. Genetay, and A. B. Binder, J. Geophys. Res. Planets 105, 4175 (2000).

    Article  ADS  Google Scholar 

  20. D. H. Crider and R. R. Vondrak, Adv. Space Res. 30, 1869 (2002).

    Article  ADS  Google Scholar 

  21. D. J. McComas, F. Allegrini, P. Bochsler, P. Frisch, et al., Geophys. Res. Lett. 36, L12104 (2009).

  22. M. Wieser, S. Barabash, Y. Futaana, M. Holmström, et al., Planet. Space Sci. 57, 2132 (2009).

    Article  ADS  Google Scholar 

  23. C. Lue, J. S. Halekas, A. R. Poppe, and J. P. McFadden, J. Geophys. Res. Space Phys. 123, 5289 (2018).

    Article  ADS  Google Scholar 

  24. Y. Saito, S. Yokota, T. Tanaka, K. Asamura, et al., Geophys. Res. Lett. 35, L24205 (2008).

  25. A. Bhardwaj, M. B. Dhanya, A. Alok, S. Barabash, et al., Geosci. Lett. 2, 10 (2015).

    Article  ADS  Google Scholar 

  26. M. Hapgood, Ann. Geophys. 25, 2037 (2007).

    Article  ADS  Google Scholar 

  27. Y. Asano, I. Shinohara, A. Retinó, P. W. Daly, et al., J. Geophys. Res. Space Phys. 115, A05215 (2010).

  28. J. Vaverka, I. Richterová, J. Pavlů, J. Šafránková, and Z. Ňemeček, Astrophys. J. 825, 133 (2016).

    Article  ADS  Google Scholar 

  29. J. L. Molaro, S. Byrne, and S. A. Langer, J. Geophys. Res. Planets 120, 255 (2015).

    Article  ADS  Google Scholar 

  30. D. Vaniman, R. Reedy, G. Heiken, G. Olhoeft, and W. Mendell, Lunar Sourcebook, A User’s Guide to the Moon (Cambridge Univ. Press, 1991), p. 27.

    Google Scholar 

  31. J. S. Halekas, G. T. Delory, D. A. Brain, R. P. Lin, et al., Geophys. Res. Lett. 34, 2111 (2007).

    Article  ADS  Google Scholar 

  32. J. S. Halekas, G. T. Delory, R. P. Lin, T. J. Stubbs, and W. M. Farrell, J. Geophys. Res. Space Phys. 114, 5110 (2009).

    Article  ADS  Google Scholar 

  33. C. M. Pieters and S. K. Noble, J. Geophys. Res. Planets 121, 1865 (2016).

    Article  ADS  Google Scholar 

  34. E. N. Slyuta, Solar Syst. Res. 48, 330 (2014).

    Article  ADS  Google Scholar 

  35. H. J. Melosh, Planetary Surface Processes, Vol. 13 of Cambridge Planetary Science Series (Cambridge Univ. Press, Cambridge, 2011).

  36. S. I. Popel, A. P. Golub’, E. A. Lisin, Y. N. Izvekova, B. Atamaniuk, G. G. Dolnikov, A. V. Zakharov, and L. M. Zelenyi, J. Phys.: Conf. Ser. 774, 012175 (2016).

  37. S. I. Popel, A. P. Golub’, A. V. Zakharov, and L. M. Zelenyi, Plasma Phys. Rep. 46, 265 (2020).

    Article  ADS  Google Scholar 

  38. I. V. Nemtchinov, V. V. Shuvalov, N. A. Artemieva, I. B. Kosarev, and S. I. Popel, Int. J. Impact Eng. 27, 521 (2002).

    Article  Google Scholar 

  39. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 31, 99 (1941).

    Google Scholar 

  40. V. V. Adushkin, L. M. Pernik, and S. I. Popel, Dokl. Earth Sci. 415, 820 (2007). https://doi.org/10.1134/S1028334X07050352

    Article  ADS  Google Scholar 

  41. W. M. Farrell, T. J. Stubbs, R. R. Vondrak, G. T. Delory, and J. S. Halekas, Geophys. Res. Lett. 34, L14201 (2007).

  42. W. M. Farrell, T. J. Stubbs, J. S. Halekas, G. T. Delory, M. R. Collier, R. R. Vondrak, and R. P. Lin, Geophys. Res. Lett. 35, L05105 (2008).

  43. W. M. Farrell, T. J. Stubbs, G. T. Delory, R. R. Vondrak, M. R. Collier, J. S. Halekas, and R. P. Lin, Geophys. Res. Lett. 35, L19104 (2008).

  44. N. Borisov and U. Mall, Planet. Space Sci. 54, 572 (2006).

    Article  ADS  Google Scholar 

  45. S. I. Popel, L. M. Zelenyi, and B. Atamaniuk, Phys. Plasmas 22, 123701 (2015).

  46. R. H. Manka, Astrophys. Space Sci. Libr. 37, 347 (1973). https://doi.org/10.1007/978-94-010-2647-5_22

    Article  ADS  Google Scholar 

  47. E. C. Whipple, Rep. Prog. Phys. 44, 1197 (1981).

    Article  ADS  Google Scholar 

  48. R. F. Willis, M. Anderegg, B. Feuerbacher, and B. Fitton, in Photon and Particle Interactions with Surfaces in Space, Proceedings of the 6th ESLAB Symposium, Noordwijk, September 26–29, 1972, Ed. by R. J. L. Grard, Astrophys. Space Sci. Libr. 37, 389 (1973).

  49. B. Feuerbacher, M. Anderegg, B. Fitton, L. D. Laude, R. F. Willis, and R. J. L. Grard, in Proceedings of the Lunar and Planetary Science Conference (1972), Vol. 3, p. 2655.

    ADS  Google Scholar 

  50. T. J. Stubbs, W. M. Farrell, J. S. Halekas, J. K. Burchill, et al., Planet. Space Sci. 90, 10 (2014).

    Article  ADS  Google Scholar 

  51. G. R. Olhoeft, A. L. Frisillo, D. W. Strangway, and H. Sharpe, Moon 9, 79 (1974).

    Article  ADS  Google Scholar 

  52. J. W. Freeman and M. Ibrahim, Moon 14, 103 (1975).

    Article  ADS  Google Scholar 

  53. S. F. Singer and E. H. Walker, Icarus 1, 112 (1962).

    Article  ADS  Google Scholar 

  54. D. R. Criswell, Astrophys. Space Sci. Libr. 37, 545 (1973).

    Article  ADS  Google Scholar 

  55. J. J. Rennilson and D. R. Criswell, Moon 10, 121 (1974).

    Article  ADS  Google Scholar 

  56. D. R. Criswell and B. R. De, J. Geophys. Res. 82, 999 (1977).

    Article  ADS  Google Scholar 

  57. T. Nitter and O. Havnes, Earth, Moon, Planets 56, 7 (1992).

    Article  ADS  Google Scholar 

  58. T. Nitter, T. K. Aslaksen, F. Melandso, and O. Havnes, IEEE Trans. Plasma Sci. 22, 159 (1994).

    Article  ADS  Google Scholar 

  59. S. Doe, J. Burns, D. Pettit, J. Blacic, and P. Keaton, in Engineering, Construction, and Operations in Space, Proceedings of the Congress (Am. Soc. of Civ. Eng., New York, 1994), p. 907.

  60. T. Nitter, O. Havnes, and F. Melandsø, J. Geophys. Res. Space Phys. 103 (A4), 6605 (1998).

    Article  ADS  Google Scholar 

  61. A. A. Sickafoose, J. E. Colwell, M. Horányi, and S. Robertson, J. Geophys. Res. Space Phys. 107, 1408 (2002).

    Article  ADS  Google Scholar 

  62. L. J. Spitzer, Astrophys. J. 93, 369 (1941).

    Article  ADS  Google Scholar 

  63. D. A. Mendis and M. Rosenberg, 32, 419 (1994).

  64. N. Borisov and U. Mall, J. Plasma Phys. 67, 277 (2002).

    Article  ADS  Google Scholar 

  65. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer Cham, 2016).

    Book  Google Scholar 

  66. C. A. Dukes and R. A. Baragiola, Planet. Space Sci. 89, 36 (2013).

    Article  ADS  Google Scholar 

  67. E. Walbridge, J. Geophys. Res. 78, 3668 (1973).

    Article  ADS  Google Scholar 

  68. P. Lee, Icarus 124, 181 (1996).

    Article  ADS  Google Scholar 

  69. N. D. Borisov and A. V. Zakharov, Solar Syst. Res. 48, 22 (2014).

    Article  ADS  Google Scholar 

  70. M. S. Robinson, P. C. Thomas, J. Veverka, S. Murchie, and B. Carcich, Nature (London, U.K.) 413 (6854), 396 (2001).

    Article  ADS  Google Scholar 

  71. N. Thomas, B. Davidsson, M. R. El-Maarry, S. Fornasier, et al., Astron. Astrophys. 583, A17 (2015).

    Article  Google Scholar 

  72. B. A. Smith, L. Soderblom, R. Beebe, J. Boyce, et al., Science (Washington, DC, U. S.) 212, 163 (1981).

    Article  ADS  Google Scholar 

  73. B. A. Smith, L. Soderblom, R. Batson, P. Bridges, et al., Science (Washington, DC, U. S.) 215, 504 (1982).

    Article  ADS  Google Scholar 

  74. D. A. Mendis and M. Horányi, Rev. Geophys. 51, 53 (2013).

    Article  ADS  Google Scholar 

  75. T. A. Nordheim, G. H. Jones, J. S. Halekas, E. Roussos, and A. J. Coates, Planet. Space Sci. 119, 24 (2015).

    Article  ADS  Google Scholar 

  76. A. J. Coates, Adv. Space Res. 33, 1977 (2004).

    Article  ADS  Google Scholar 

  77. K. Szegö, K. H. Glassmeier, R. Bingham, A. Bogdanov, et al., Space Sci. Rev. 94, 429 (2000).

    Article  ADS  Google Scholar 

  78. W. H. Ip and W. I. Axford, Nature (London, U.K.) 325 (6103), 418 (1987).

    Article  ADS  Google Scholar 

  79. A. A. Galeev, T. E. Cravens, and T. I. Gombosi, Astrophys. J. 289, 807 (1985).

    Article  ADS  Google Scholar 

  80. K.-H. Glassmeier, Philos. Trans. R. Soc. London, Ser. A 375 (2097), 20160256 (2017).

  81. M. B. Vasil’ev, V. A. Vinogradov, A. S. Vyshlov, O. G. Ivanovskii, et al., Cosmic Res. 12, 102 (1974).

    ADS  Google Scholar 

  82. A. S. Vyshlov, in Space Research XVI, Proceedings of the Open Meetings of Working Groups on Physical Sciences, May 29–June 7, 1975, and Symposium and Workshop on Results from Coordinated Upper Atmosphere Measurement Programs, Varna, Bulgaria, May 29–31, 1975 (Akademie, Berlin, 1976), p. 945.

  83. T. J. Stubbs, D. A. Glenar, W. M. Farrell, R. R. Vondrak, M. R. Collier, J. S. Halekas, and G. T. Delory, Planet. Space Sci. 59, 1659 (2011).

    Article  ADS  Google Scholar 

  84. J. E. McCoy and D. R. Criswell, in Proceedings of the Lunar Science Conference, 5th, Houston, TX, March 18–22, 1974 (Pergamon, New York, 1974), p. 2991.

  85. H. A. Zook and J. E. McCoy, Geophys. Res. Lett. 18, 2117 (1991).

    Article  ADS  Google Scholar 

  86. T. J. Stubbs, R. R. Vondrak, and W. M. Farrell, Adv. Space Res. 37, 59 (2006).

    Article  ADS  Google Scholar 

  87. L. Ksanfomality, S. Murchie, D. Britt, T. Duxbury, et al., Planet. Space Sci. 39, 311 (1991).

    Article  ADS  Google Scholar 

  88. J. B. Pollack, J. Veverka, K. Pang, D. Colburn, A. L. Lane, and J. M. Ajello, Science (Washington, DC, U. S.) 199, 66 (1978).

    Article  ADS  Google Scholar 

  89. A. G. Duba and J. N. Boland, in Proceedings of the Lunar and Planetary Science VI (1984), p. 232.

    Google Scholar 

  90. A. Zakharov, M. Horányi, P. Lee, O. Witasse, and F. Cipriani, Planet. Space Sci. 102, 171 (2014).

    Article  ADS  Google Scholar 

  91. S. L. Soter, PhD Theses (Cornell Univ. Press, New York, 1971).

    Google Scholar 

  92. W.-H. Ip and M. Banaszkiewicz, Geophys. Res. Lett. 17, 857 (1990).

    Article  ADS  Google Scholar 

  93. M. Banaszkiewicz and W.-H. Ip, Icarus 90, 237 (1991).

    Article  ADS  Google Scholar 

  94. K. Kholshevnikov, A. Krivov, L. Sokolov, and V. Titov, Icarus 105, 351 (1993).

    Article  ADS  Google Scholar 

  95. H. Ishimoto and T. Mukai, Planet. Space Sci. 42, 691 (1994).

    Article  ADS  Google Scholar 

  96. A. Juhász and M. Horányi, J. Geophys. Res. Planets 100 (E2), 3277 (1995).

    Article  ADS  Google Scholar 

  97. A. V. Krivov and D. P. Hamilton, Icarus 128, 335 (1997).

    Article  ADS  Google Scholar 

  98. N. Divine, J. Geophys. Res. Planets 98 (E9), 17029 (1993).

    Article  ADS  Google Scholar 

  99. A. V. Krivov, A. G. Feofilov, and V. V. Dikarev, Planet. Space Sci. 54, 871 (2006).

    Article  ADS  Google Scholar 

  100. A. Juhász, M. Tátrallyay, G. Gévai, and M. Horányi, J. Geophys. Res. Planets 98, 1205 (1993).

    Article  ADS  Google Scholar 

  101. A. V. Krivov, Astron. Astrophys. 291, 657 (1994).

    ADS  Google Scholar 

  102. H. Ishimoto, H. Kimura, N. Nakagawa, and T. Mukai, Adv. Space Res. 19, 123 (1997).

    Article  ADS  Google Scholar 

  103. T. C. Duxbury and A. C. Ocampo, Icarus 76, 160 (1988).

    Article  ADS  Google Scholar 

  104. M. R. Showalter, D. P. Hamilton, and P. D. Nicholson, Planet. Space Sci. 54, 844 (2006).

    Article  ADS  Google Scholar 

  105. A. V. Bogdanov, J. Geophys. Res. Space Phys. 86, 6926 (1981).

    Article  ADS  Google Scholar 

  106. E. M. Dubinin, R. Lundin, N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, H. Koskinen, K. Schwingenshuh, and Y. G. Yeroshenko, Geophys. Res. Lett. 17, 861 (1990).

    Article  ADS  Google Scholar 

  107. M. Øieroset, D. A. Brain, E. Simpson, D. L. Mitchell, T. D. Phan, J. S. Halekas, R. P. Lin, and M. H. Acuña, Icarus 206, 189 (2010).

    Article  ADS  Google Scholar 

  108. Y. Futaana, S. Barabash, M. Holmström, H. Nilsson, and R. Lundin, in Proceedings of the European Planetary Science Congress, September 14–18, 2009, Potsdam, Germany (2009), p. 701. http://meetings.copernicus.org/epsc2009.

    Google Scholar 

  109. M. A. Kahre, J. R. Murphy, C. E. Newman, R. J. Wilson, B. A. Cantor, M. T. Lemmon, and M. J. Wolff, in Asteroids, Comets, Meteors—Proceedings of the ACM’2017, Ed. by R. M. Haberle, R. T. Clancy, F. Forget, M. D. Smith, and R. W. Zurek (2017), p. 229.

  110. O. I. Korablev, V. A. Krasnopolsky, A. V. Rodin, and E. Chassefiére, Icarus 102, 76 (1993).

    Article  ADS  Google Scholar 

  111. V. I. Moroz, V. V. Kerzhanovich, and V. A. Krasnopol’skij, Cosmic Res. 29 (1), 1 (1991).

    ADS  Google Scholar 

  112. M. D. Smith, Ann. Rev. Earth Planet. Sci. 36, 191 (2008).

    Article  ADS  Google Scholar 

  113. L. Montabone, F. Forget, E. Millour, R. J. Wilson, et al., Icarus 251, 65 (2015).

    Article  ADS  Google Scholar 

  114. L. Montabone, A. Spiga, D. M. Kass, A. Kleinböhl, F. Forget, and E. Millour, J. Geophys. Res. Planets 125 (8), e06111 (2020).

  115. T. Kuroda, A. S. Medvedev, P. Hartogh, and M. Takahashi, Geophys. Res. Lett. 35, L23202 (2008).

  116. C. E. Newman and M. I. Richardson, Icarus 257, 47 (2015).

    Article  ADS  Google Scholar 

  117. M. A. Kahre, J. L. Hollingsworth, R. M. Haberle, and R. J. Wilson, Icarus 260, 477 (2015).

    Article  ADS  Google Scholar 

  118. L. Neary and F. Daerden, Icarus 300, 458 (2018).

    Article  ADS  Google Scholar 

  119. M. Rapp and F.-J. Lübken, Atmos. Chem. Phys. 4, 2601 (2004).

    Article  ADS  Google Scholar 

  120. U. von Zahn, G. Baumgarten, U. Berger, J. Fiedler, and P. Hartogh, Atmos. Chem. Phys. 4, 2449 (2004).

    Article  ADS  Google Scholar 

  121. B. A. Klumov, G. E. Morfill, and S. I. Popel, J. Exp. Theor. Phys. 100, 152 (2005).

    Article  ADS  Google Scholar 

  122. B. A. Klumov, S. I. Popel, and R. Bingham, JETP Lett. 72, 364 (2000).

    Article  ADS  Google Scholar 

  123. A. V. Gurevich, A. G. Litvak, A. L. Vikharev, O. A. Ivanov, N. D. Borisov, and K. F. Sergeichev, Phys. Usp. 43, 1103 (2000).

    Article  ADS  Google Scholar 

  124. G. A. Askar’yan, G. M. Batanov, I. A. Kossyi, and A. Yu. Kostinskii, Sov. Phys. Dokl. 33, 650 (1988).

    Google Scholar 

  125. A. N. Simonenko, in Physics and Dynamics of Meteors, Proceedings of the IAU Symposium No. 33, Tatranska Lomnica, Czechoslovakia, September 4–9, 1967, Ed. by L. Kresak and P. M. Millman (Reidel, Dordrecht, 1968), p. 207.

  126. S. Okuzumi, Astrophys. J. 698, 1122 (2009).

    Article  ADS  Google Scholar 

  127. M. Horányi and C. K. Goertz, Astrophys. J. 361, 155 (1990).

    Article  ADS  Google Scholar 

  128. M. V. Gerasimov, B. A. Ivanov, O. I. Yakovlev, and Y. P. Dikov, Earth, Moon Planets 80, 209 (1998).

    Article  ADS  Google Scholar 

  129. M. A. Zaitsev, M. V. Gerasimov, E. N. Safonova, and A. S. Vasiljeva, Solar Syst. Res. 50, 113 (2016).

    Article  ADS  Google Scholar 

  130. T. I. Morozova and S. I. Popel, Plasma Phys. Rep. 48, 774 (2022).

    Article  ADS  Google Scholar 

  131. J. Dorschner and T. Henning, Astron. Astrophys. Rev. 6, 271 (1995).

    Article  ADS  Google Scholar 

  132. G. E. Ciolek, in Proceedings of the Conference on the Physics of the Interstellar Medium and Intergalactic Medium, Italy, June 20–24, 1994, Ed. by A. Ferrara, C. F. McKee, C. Heiles, and P. R. Shapiro, ASP Conf. Ser. 80, 174 (1995).

  133. E. F. van Dishoeck, G. A. Blake, B. T. Draine, and J. I. Lunine, in Protostars and Planets III, Ed. by E. H. Levy and J. I. Lunine (Univ. Arizona Press, Tucson, AZ, 1993), p. 163.

  134. C. P. Endres, S. Schlemmer, P. Schilke, J. Stutzki, and H. S. Müller, J. Mol. Spectrosc. 327, 95 (2016).

    Article  ADS  Google Scholar 

  135. A. Dalgarno and J. H. Black, Rep. Prog. Phys. 39, 573 (1976).

    Article  ADS  Google Scholar 

  136. C. M. Leung, E. Herbst, W. F. Huebner, C. M. Leung, E. Herbst, and W. F. Huebner, Astrophys. J. Suppl. 56, 231 (1984).

    Article  Google Scholar 

  137. L. B. D’Hendecourt, L. J. Allamandola, and J. M. Greenberg, Astron. Astrophys. 152, 130 (1985).

    ADS  Google Scholar 

  138. P. D. Brown and S. B. Charnley, Mon. Not. R. Astron. Soc. 244, 432 (1990).

    ADS  Google Scholar 

  139. T. Albertsson, D. A. Semenov, A. I. Vasyunin, T. Henning, and E. Herbst, Astrophys. J. Suppl. 207, 27 (2013).

    Article  Google Scholar 

  140. D. McElroy, C. Walsh, A. J. Markwick, M. A. Cordiner, K. Smith, and T. J. Millar, Astron. Astrophys. 550, A36 (2013).

    Article  ADS  Google Scholar 

  141. T. Grassi, S. Bovino, D. R. G. Schleicher, J. Prieto, D. Seifried, E. Simoncini, and F. A. Gianturco, Mon. Not. R. Astron. Soc. 439, 2386 (2014); arXiv: 1311.1070 [astro-ph.GA].

    Article  ADS  Google Scholar 

  142. O. Biham, I. Furman, V. Pirronello, and G. Vidali, Astrophys. J. 553, 595 (2001).

    Article  ADS  Google Scholar 

  143. S. B. Charnley, Astrophys. J. 562, L99 (2001).

    Article  ADS  Google Scholar 

  144. A. Lipshtat and O. Biham, Phys. Rev. Lett. 93, 170601 (2004).

  145. T. Stantcheva and E. Herbst, Astron. Astrophys. 423, 241 (2004).

    Article  ADS  Google Scholar 

  146. Q. Chang, H. M. Cuppen, and E. Herbst, Astron. Astrophys. 434, 599 (2005).

    Article  ADS  Google Scholar 

  147. T. Garrod, Astron. Astrophys. 491, 239 (2008).

    Article  ADS  Google Scholar 

  148. A. I. Vasyunin and E. Herbst, Astrophys. J. 762, 86 (2012).

    Article  ADS  Google Scholar 

  149. V. Buch and R. Czerminski, J. Chem. Phys. 95, 6026 (1998).

    Article  ADS  Google Scholar 

  150. A. Al-Halabi, R. Bianco, and J. T. Hynes, J. Chem. Phys. A 106, 7639 (2002).

    Article  Google Scholar 

  151. A. Al-Halabi, A. W. Kleyn, E. F. van Dishoeck, M. C. van Hemert, and G. J. Kroes, J. Chem. Phys. A 49, 10615 (2003).

    Article  Google Scholar 

  152. A. Al-Halabi, H. J. Fraser, G. J. Kroes, and E. F. van Dishoeck, Astron. Astrophys. 422, 777 (2004).

    Article  ADS  Google Scholar 

  153. V. K. Veeraghattam, K. Manrodt, S. P. Lewis, and P. C. Stancil, Astrophys. J. 790, 4 (2014).

    Article  ADS  Google Scholar 

  154. E. R. Batista, P. Ayotte, A. Bilić, B. D. Kay, and H. Jónsson, Phys. Rev. Lett. 95, 223201 (2005).

  155. Molecules, CDMS Classic Documentation. https://cdms.astro.uni-koeln.de/classic/molecules.

  156. E. Herbst and E. F. V. Dishoeck, Ann. Rev. Astron. Astrophys. 47, 427 (2009).

    Article  ADS  Google Scholar 

  157. C. Ceccarelli, P. Caselli, F. Fontani, R. Neri, et al., Astrophys. J. 850, 176 (2017); arXiv: 1710.10437 [astro-ph.SR].

    Article  ADS  Google Scholar 

  158. L. Testi, T. Birnstiel, L. Ricci, S. Andrews, et al., in Protostars and Planets VI, Ed. by H. Beuther, R. S. Klessen, C. P. Dullemond, and T. Henning (Univ. Arizona Press, Tucson, AZ, 2014), p. 339.

  159. K. Wada, H. Tanaka, S. Okuzumi, H. Kobayashi, T. Suyama, H. Kimura, and T. Yamamoto, Astron. Astrophys. 559, A62 (2013).

    Article  ADS  Google Scholar 

  160. K. Wada, H. Tanaka, T. Suyama, H. Kimura, and T. Yamamoto, Astrophys. J. 702, 1490 (2009).

    Article  ADS  Google Scholar 

  161. J. F. Gonzalez, G. Laibe, and S. T. Maddison, Mon. Not. R. Astron. Soc. 467, 1984 (2017).

    ADS  Google Scholar 

  162. B. S. Hensley and B. T. Draine, arXiv: 2208.12365 [astro-ph.GA] (2022).

  163. J. S. Mathis, W. Rumpl, and K. H. Nordsieck, Astrophys. J. 217, 425 (1977).

    Article  ADS  Google Scholar 

  164. B. T. Draine and H. M. Lee, Astrophys. J. 285, 89 (1984).

    Article  ADS  Google Scholar 

  165. J. Weingartner and B. Draine, Astrophys. J. 548, 296 (2001).

    Article  ADS  Google Scholar 

  166. S. Wang, A. Li, and B. W. Jiang, Mon. Not. R. Astron. Soc. 454, 569 (2015).

    Article  ADS  Google Scholar 

  167. D. C. Morton, J. F. Drake, E. B. Jenkins, J. B. Rogerson, L. Spitzer, and D. G. York, Astrophys. J. 181, L103 (1973).

    Article  ADS  Google Scholar 

  168. B. S. Hensley and B. T. Draine, Astrophys. J. 906, 73 (2021).

    Article  ADS  Google Scholar 

  169. R. Gehrz, in Interstellar Dust, Proceedings of the 135th Symposium of the IAU, Santa Clara, CA, July 26–30, 1988, Ed. by L. J. Allamandola and A. G. G. M. Tielens (Kluwer Academic, Dordrecht, 1989), p. 445.

  170. C. McKee, in Interstellar Dust, Proceedings of the 135th Symposium of the IAU, Santa Clara, CA, July 26–30, 1988, Ed. by L. J. Allamandola and A. G. G. M. Tielens (Kluwer Academic, Dordrecht, 1989), p. 431.

  171. R. Tazaki, K. Ichikawa, and M. Kokubo, Astrophys. J. 892, 84 (2020).

    Article  ADS  Google Scholar 

  172. A. P. Jones, A. G. G. M. Tielens, D. J. Hollenbach, and C. F. McKee, Astrophys. J. 433, 797 (1994).

    Article  ADS  Google Scholar 

  173. K. M. Douglas, M. A. Blitz, W. Feng, D. E. Heard, J. M. Plane, H. Rashid, and P. W. Seakins, Icarus 321, 752 (2019).

    Article  ADS  Google Scholar 

  174. M. Minissale, Y. Aikawa, E. Bergin, M. Bertin, et al., Am. Chem. Soc. Earth Space Chem. 6, 597 (2022).

    ADS  Google Scholar 

  175. T. E. Sheridan, J. Goree, Y. T. Chiu, R. L. Rairden, and J. A. Kiessling, J. Geophys. Res. Space Phys. 97, 2935 (1992).

    Article  ADS  Google Scholar 

  176. T. M. Flanagan and J. Goree, Phys. Plasmas 13, 123504 (2006).

  177. T. E. Sheridan and A. Hayes, App. Phys. Lett. 98, 091501 (2011); arXiv: 1102.1986 [physics.plasm-ph].

  178. C. M. Hartzell and D. J. Scheeres, Planet. Space Sci. 59, 1758 (2011).

    Article  ADS  Google Scholar 

  179. T. E. Sheridan, J. Appl. Phys. 113, 143304 (2013).

  180. X. Wang, J. Schwan, H.-W. Hsu, E. Grün, and M. Horányi, Geophys. Res. Lett. 43, 6103 (2016).

    Article  ADS  Google Scholar 

  181. E. V. Rosenfeld and A. V. Zakharov, Icarus 338, 113538 (2020).

  182. X. Wang, J. Schwan, N. Hood, H.-W. Hsu, E. Grün, and M. Horányi, J. Visual. Exp. 2018, e57072 (2018). https://www.jove.com/v/57072/experimental-methods-dust-charging-mobilization-on-surfaces-with.

  183. A. Shu, A. Collette, K. Drake, E. Grün, et al., Rev. Sci. Instrum. 83, 075108 (2012).

  184. I. A. Kuznetsov, S. L. G. Hess, A. V. Zakharov, F. Cipriani, et al., Planet. Space Sci. 156, 62 (2018).

    Article  ADS  Google Scholar 

  185. I. Langmuir, C. G. Found, and A. F. Dittmer, Science (N.Y.) 60, 392 (1924).

    Article  ADS  Google Scholar 

  186. H. Ikezi, Phys. Fluids 29, 1764 (1986).

    Article  ADS  Google Scholar 

  187. J. H. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).

    Article  ADS  Google Scholar 

  188. H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Möhlmann, Phys. Rev. Lett. 73, 652 (1994).

    Article  ADS  Google Scholar 

  189. A. Melzer, T. Trottenberg, and A. Piel, Phys. Lett. A 191, 301 (1994).

    Article  ADS  Google Scholar 

  190. Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys. 33, L804 (1994).

    Article  ADS  Google Scholar 

  191. A. Shu, S. Bugiel, E. Grün, J. Hillier, M. Horányi, T. Munsat, and R. Srama, Planet. Space Sci. 89, 29 (2013).

    Article  ADS  Google Scholar 

  192. J. K. Hillier, Z. Sternovsky, S. Kempf, M. Trieloff, M. Guglielmino, F. Postberg, and M. C. Price, Planet. Space Sci. 156, 96 (2018).

    Article  ADS  Google Scholar 

  193. L. Nouzák, S. Hsu, D. Malaspina, F. M. Thayer, et al., Planet. Space Sci. 156, 85 (2018).

    Article  ADS  Google Scholar 

  194. J. I. Samaniego, X. Wang, L. Andersson, D. Malaspina, R. E. Ergun, and M. Horányi, J. Geophys. Res. Space Phys. 123, 6054 (2018).

    Article  ADS  Google Scholar 

  195. N. Hood, A. Carroll, R. Mike, X. Wang, J. Schwan, H. W. Hsu, and M. Horányi, Geophys. Res. Lett. 45, 13.206 (2018).

  196. N. C. Orger, K. Toyoda, H. Masui, and M. Cho, Adv. Space Res. 63, 3270 (2019).

    Article  ADS  Google Scholar 

  197. A. Champlain, J. C. Matéo-Vélez, J. F. Roussel, S. Hess, P. Sarrailh, G. Murat, J. P. Chardon, and A. Gajan, J. Geophys. Res. Space Phys. 121, 103 (2016).

    Article  ADS  Google Scholar 

  198. I. Cermak, E. Gruen, and J. Svestka, Adv. Space Res. 15, 59 (1995).

    Article  ADS  Google Scholar 

  199. N. D’Angelo, J. Phys. D: Appl. Phys. 28, 1009 (1995).

    Article  ADS  Google Scholar 

  200. A. Barkan, N. D’Angelo, and R. Merlino, Planet. Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  201. M. Schwabe, S. K. Zhdanov, H. M. Thomas, A. V. Ivlev, et al., New J. Phys. 10, 033037 (2008).

  202. A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995).

    Article  ADS  Google Scholar 

  203. B. Tadsen, F. Greiner, S. Groth, and A. Piel, Phys. Plasmas 22, 113701 (2015).

  204. T. Deka, A. Boruah, S. K. Sharma, and H. Bailung, Phys. Plasmas 24, 093706 (2017).

  205. S. V. Annibaldi, A. V. Ivlev, U. Konopka, S. Ratynskaia, et al., New J. Phys. 9, 327 (2007).

    Article  ADS  Google Scholar 

  206. J. Goree, B. Liu, M. Y. Pustylnik, H. M. Thomas, et al., Phys. Plasmas 27, 123701 (2020).

  207. M. Schwabe, S. A. Khrapak, S. K. Zhdanov, M. Y. Pustylnik, et al., New J. Phys. 22, 083079 (2020).

  208. E. Thomas, R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007).

  209. J. D. Williams, Phys. Rev. E 89, 023105 (2014).

  210. R. L. Merlino, J. Plasma Phys. 80, 773 (2014).

    Article  ADS  Google Scholar 

  211. M. Schwabe, M. Rubin-Zuzic, S. Zhdanov, H. M. Thomas, and G. E. Morfill, Phys. Rev. Lett. 99, 095002 (2007).

  212. C.-T. Liao, L.-W. Teng, C.-Y. Tsai, C.-W. Io, and I. Lin, Phys. Rev. Lett. 100, 185004 (2008).

  213. T. Trottenberg, D. Block, and A. Piel, Phys. Plasmas 13, 042105 (2006).

  214. J. D. Williams, E. Thomas, and L. Marcus, Phys. Plasmas 15, 043704 (2008).

  215. I. Pilch, T. Reichstein, and A. Piel, Phys. Plasmas 16, 123709 (2009).

  216. E. Thomas, Phys. Plasmas 17, 043701 (2010).

  217. L. W. Teng, M. C. Chang, Y. P. Tseng, and I. Lin, Phys. Rev. Lett. 103, 245005 (2009).

  218. P. K. Shukla and Lin I, Phys. Lett. A 374, 1165 (2010).

    Article  ADS  Google Scholar 

  219. S. K. Sharma, A. Boruah, Y. Nakamura, and H. Bailung, Phys. Plasmas 23, 053702 (2016).

  220. K. O. Menzel, O. Arp, and A. Piel, Phys. Rev. E 84, 016405 (2011).

  221. K. O. Menzel, O. Arp, and A. Piel, Phys. Rev. E 83, 016402 (2011).

  222. J. Pramanik, B. M. Veeresha, G. Prasad, A. Sen, and P. K. Kaw, Phys. Lett. A 312, 84 (2003).

    Article  ADS  Google Scholar 

  223. Y. Y. Tsai, M. C. Chang, and Lin I, Phys. Rev. E 86, 045402 (2012).

  224. A. Melzer, H. Krüger, S. Schütt, and M. Mulsow, Phys. Plasmas 27, 033704 (2020).

  225. A. Melzer, H. Krüger, D. Maier, and S. Schütt, Rev. Mod. Plasma Phys. 5, 11 (2021).

    Article  ADS  Google Scholar 

  226. Y. Watanabe, J. Phys. D: Appl. Phys. 39, 329 (2006).

    Article  ADS  Google Scholar 

  227. J. Berndt, E. Kovačević, I. Stefanović, O. Stepanović, S. H. Hong, L. Boufendi, and J. Winter, Contrib. Plasma Phys. 49, 107 (2009).

    Article  ADS  Google Scholar 

  228. S. Groth, F. Greiner, and A. Piel, Plasma Sources Sci. Technol. 28, 115016 (2019).

  229. B. Chutia, T. Deka, Y. Bailung, S. K. Sharma, and H. Bailung, Phys. Plasmas 28, 063703 (2021).

  230. B. Chutia, T. Deka, Y. Bailung, D. Sharma, S. K. Sharma, and H. Bailung, Phys. Plasmas 28, 123702 (2021).

  231. Y. A. Ussenov, E. von Wahl, Z. Marvi, T. S. Ramazanov, and H. Kersten, Vacuum 166, 15 (2019).

    Article  ADS  Google Scholar 

  232. S. Orazbayev, Y. Yerlanuly, A. Utegenov, Z. Moldabekov, M. Gabdullin, and T. Ramazanov, Nanotechnology 32, 455602 (2021).

  233. W. Don, S. Ruhunusiri, and J. Goree, IEEE Trans. Plasma Sci. 42, 2688 (2014).

    Article  ADS  Google Scholar 

  234. J. M. Harper, G. Gogia, B. Wu, Z. Laseter, and J. C. Burton, Phys. Rev. Res. 2, 033500 (2020).

  235. A. V. Zakharov, A. Y. Poroykov, S. A. Bednyakov, A. N. Lyash, I. A. Shashkova, I. A. Kuznetsov, and G. G. Dolnikov, Measurement 171, 108831 (2021).

  236. V. E. Fortov, A. P. Nefedov, O. S. Vaulina, A. M. Lipaev, et al., J. Exp. Theor. Phys. 87, 1087 (1998).

    Article  ADS  Google Scholar 

  237. A. P. Nefedov, O. S. Vaulina, O. F. Petrov, V. I. Molotkov, V. M. Torchinski, V. E. Fortov, A. V. Chernyshev, A. M. Lipaev, A. I. Ivanov, A. Yu. Kaleri, Yu. P. Semenov, and S. V. Zaletin, J. Exp. Theor. Phys. 95, 673 (2002).

    Article  ADS  Google Scholar 

  238. A. P. Nefedov, G. E. Morfill, V. E. Fortov, H. M. Thomas, et al., New J. Phys. 5, 33 (2003).

    Article  ADS  Google Scholar 

  239. A. G. Khrapak, V. I. Molotkov, A. M. Lipaev, D. I. Zhukhovitskii, et al., Contrib. Plasma Phys. 56, 253 (2016).

    Article  ADS  Google Scholar 

  240. A. V. Ivlev, G. E. Morfill, H. M. Thomas, C. Räth, et al., Phys. Rev. Lett. 100, 095003 (2008).

  241. S. Khrapak, P. Huber, H. Thomas, V. Naumkin, V. Molotkov, and A. Lipaev, Phys. Rev. E 99, 053210 (2019).

  242. S. F. Savin, L. G. D’yachkov, M. M. Vasil’ev, O. F. Petrov, and V. E. Fortov, Tech. Phys. Lett. 35, 1144 (2009).

    Article  ADS  Google Scholar 

  243. S. F. Savin, L. G. D’yachkov, M. I. Myasnikov, O. F. Petrov, et al., JETP Lett. 94, 508 (2011).

    Article  ADS  Google Scholar 

  244. O. F. Petrov, M. I. Myasnikov, L. G. D’Yachkov, M. M. Vasiliev, et al., Phys. Rev. E 86, 036404 (2012).

  245. M. Y. Pustylnik, M. A. Fink, V. Nosenko, T. Antonova, et al., Rev. Sci. Instrum. 87, 093505 (2016).

  246. A. V. Zobnin, A. D. Usachev, A. M. Lipaev, O. F. Petrov, et al., J. Phys.: Conf. Ser. 774, 012174 (2016).

  247. S. Mitic, M. Y. Pustylnik, D. Erdle, A. M. Lipaev, et al., Phys. Rev. E 103, 063212 (2021).

  248. S. Jaiswal, M. Y. Pustylnik, S. Zhdanov, H. M. Thomas, et al., Phys. Plasmas 25, 083705 (2018).

  249. V. E. Fortov, A. P. Nefedov, V. A. Sinel’shchikov, A. D. Usachev, and A. V. Zobnin, Phys. Lett. A 267, 179 (2000).

    Article  ADS  Google Scholar 

  250. R. E. Boltnev, M. M. Vasiliev, E. A. Kononov, and O. F. Petrov, J. Exp. Theor. Phys. 126, 561 (2018).

    Article  ADS  Google Scholar 

  251. R. E. Boltnev, M. M. Vasiliev, E. A. Kononov, and O. F. Petrov, Sci. Rep. 9, 3261 (2019).

    Article  ADS  Google Scholar 

  252. M. M. Vasiliev, L. G. D’yachkov, S. N. Antipov, R. Huijink, O. F. Petrov, and V. E. Fortov, Eur. Phys. Lett. 93, 15001 (2011).

    Article  ADS  Google Scholar 

  253. O. F. Petrov, F. M. Trukhachev, M. M. Vasiliev, and N. V. Gerasimenko, J. Exp. Theor. Phys. 126, 842 (2018).

    Article  ADS  Google Scholar 

  254. M. M. Vasiliev, S. N. Antipov, and O. F. Petrov, J. Phys. A: Math. Gen. 39, 4539 (2006).

    Article  ADS  Google Scholar 

  255. E. A. Lisin, E. A. Kononov, E. A. Sametov, M. M. Vasiliev, and O. F. Petrov, Molecules 26, 7535 (2021).

    Article  Google Scholar 

  256. O. S. Vaulina, E. A. Lisin, A. V. Gavrikov, O. F. Petrov, and V. E. Fortov, Phys. Rev. Lett. 103, 035003 (2009).

  257. E. A. Lisin, R. A. Timirkhanov, O. S. Vaulina, O. F. Petrov, and V. E. Fortov, New J. Phys. 15, 53004 (2013).

    Article  Google Scholar 

  258. O. F. Petrov, M. M. Vasiliev, O. S. Vaulina, K. B. Stacenko, E. V. Vasilieva, E. A. Lisin, Y. Tun, and V. E. Fortov, Eur. Phys. Lett. 111, 45002 (2015).

    Article  ADS  Google Scholar 

  259. E. A. Kononov, M. M. Vasiliev, O. F. Petrov, and E. V. Vasilieva, Nanomaterials 11, 2931 (2021).

    Article  Google Scholar 

  260. I. Kuznetsov, I. Shashkova, A. Poroykov, A. Zakharov, et al., Astronomy at the Epoch of Multimessenger Studies, Proceedings of the VAK-2021 Conference, August 23–28, 2021, Moscow, p. 246. https://ui.adsabs.harvard.edu/abs/2022aems.conf..246K/abstract.

  261. E. Mullikin, H. Anderson, N. O’Hern, M. Farrah, et al., Astrophys. J. 910, 72 (2021).

    Article  ADS  Google Scholar 

  262. J. C. Santos, K.-J. Chuang, T. Lamberts, G. Fedoseev, S. Ioppolo, and H. Linnartz, Astrophys. J. Lett. 931, L33 (2022).

    Article  ADS  Google Scholar 

  263. D. Qasim, G. Fedoseev, K. J. Chuang, J. He, S. Ioppolo, E. F. van Dishoeck, and H. Linnartz, Nat. Astron. 4, 781 (2020).

    Article  ADS  Google Scholar 

  264. N. N. Skvortsova, D. V. Malakhov, V. D. Stepakhin, S. A. Maiorov, G. M. Batanov, V. D. Borozosekov, E. M. Konchekov, L. V. Kolik, A. A. Letunov, E. A. Obraztsova, A. E. Petrov, D. O. Pozdnyakov, K. A. Sarksyan, A. A. Sorokin, G. V. Ukryukov and N. K. Kharchev, JETP Lett. 106, 262 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the National Center for Physics and Mathematics (Sarov) within the framework of project No. 10: “Study of plasma-dust processes in the exosphere of the Moon and other non-atmospheric bodies of the Solar System using laboratory modeling methods”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kuznetsov.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, I.A., Zakharov, A.V., Zelenyi, L.M. et al. Dust Particles in Space: Opportunities for Experimental Research. Astron. Rep. 67, 35–60 (2023). https://doi.org/10.1134/S1063772923010110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923010110

Keywords:

Navigation