Skip to main content
Log in

Constraints on the Number of Primordial Black Holes Due to Interaction with Dust

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Photons emitted by primordial black holes (PBHs) due to the Hawking effect are among the factors of interstellar dust heating. Based on the data on the temperature of dust, constraints on the fraction of PBHs in the dark matter were found for various distributions of PBHs with masses \({{10}^{{15}}} \leqslant M \leqslant {{10}^{{17}}}\) g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, et al., Phys. Rev. Lett. 116, 061102 (2016).

  2. R. A. Remillard and J. E. McClintock, Ann. Rev. Astron. Astrophys. 44, 49 (2006).

    Article  ADS  Google Scholar 

  3. G. Hütsi, M. Raidal, V. Vaskonen, and H. Veermäe, J. Cosmol. Astropart. Phys., No. 03, 068 (2021).

  4. A. B. Aleksandrov, A. B. Dashkina, N. S. Konovalova, N. M. Okat’eva, et al., Phys. Usp. 64, 861 (2021).

    Article  Google Scholar 

  5. A. P. Serebrov, R. M. Samoilov, V. G. Ivochkin, A. K. Fomin, et al., Phys. Rev. D 104, 032003 (2021).

  6. V. V. Barinov, B. T. Cleveland, S. N. Danshin, H. Ejiri, et al., arXiv: 2109.11482 [nucl-ex] (2021).

  7. V. Barinov and D. Gorbunov, arXiv: 2109.14654 [hep-ph] (2021).

  8. S. Hawking, Mon. Not. R. Astron. Soc. 152, 75 (1971).

    Article  ADS  Google Scholar 

  9. A. D. Dolgov and J. Silk, Phys. Rev. D 47, 4244 (1993).

    Article  ADS  Google Scholar 

  10. Ya. B. Zel’dovich and I. D. Novikov, Sov. Astron. 10, 602 (1966).

    ADS  Google Scholar 

  11. B. Carr and S. Hawking, Mon. Not. R. Astron. Soc. 168, 399 (1974).

    Article  ADS  Google Scholar 

  12. G. F. Chapline, Nature (London, U.K.) 253, 251 (1975).

    Article  ADS  Google Scholar 

  13. P. Meszaros, Astron. Astrophys. 38, 5 (1975).

    ADS  Google Scholar 

  14. B. J. Carr, Astrophys. J. 201, 1 (1975).

    Article  ADS  Google Scholar 

  15. M. Sasaki, Class. Quantum Grav. 35, 063001 (2018).

  16. B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Phys. Rev. D 81, 104019 (2010).

  17. A. Arbey, J. Auffinger, and J. Silk, Phys. Rev. D 101, 023010 (2020).

  18. G. Ballesteros, J. Coronado, and D. Gaggero, Phys. Lett. B 808, 135624 (2020).

  19. B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Rep. Prog. Phys. 84, 53 (2021).

    Article  Google Scholar 

  20. B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Phys. Rev. D 94, 044029 (2016).

  21. W. DeRocco and P. Graham, Phys. Rev. Lett. 123, 251102 (2019).

  22. R. Laha, Phys. Rev. Lett. 123, 251101 (2019).

  23. R. Laha, J. B. Muñoz, and T. R. Slatyer, Phys. Rev. D 101, 123514 (2020).

  24. B. Carr and F. Kühnel, arXiv: 2110.02821 [astro-ph.CO] (2021).

  25. M. Chan and C. Lee, Mon. Not. R. Astron. Soc. 497, 1212 (2020).

    Article  ADS  Google Scholar 

  26. S. J. Clark, B. Dutta, Y. Gao, L. E. Strigari, and S. Watson, Phys. Rev. D 95, 083006 (2017).

  27. P. Stöcker, M. Krämer, J. Lesgourgues, and V. Poulin, J. Cosmol. Astropart. Phys., No. 03, 018 (2018).

  28. H. Poulter, Y. Ali-Haimoud, J. Hamann, M. White, and A. G. Williams, arXiv: 1907.06485 [astro-ph.CO] (2019).

  29. S. Acharya and R. Khatri, J. Cosmol. Astropart. Phys., No. 02, 010 (2020).

  30. S. Acharya and R. Khatri, J. Cosmol. Astropart. Phys., No. 06, 018 (2020).

  31. M. Boudaud and M. Cirelli, Phys. Rev. Lett. 122, 041104 (2019).

  32. N. G. Bochkarev, Principles of Interstellar Medium Physics (Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  33. J. S. Mathis, W. Rumpl, and K. H. Nordsieck, Astrophys. J. 217, 425 (1977).

    Article  ADS  Google Scholar 

  34. A. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  35. S. Hawking, Nature (London, U.K.) 248, 30 (1974).

    Article  ADS  Google Scholar 

  36. S. Hawking, Comm. Math. Phys. 43, 199 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  37. J. MacGibbon and B. Webber, Phys. Rev. D 41, 3052 (1990).

    Article  ADS  Google Scholar 

  38. G. Ballesteros, J. Coronado-Blázquez, and D. Gaggero, Phys. Lett. B 808, 135624 (2020).

  39. K. Krishnamoorthy, Handbook of Statistical Distributions with Applications (Taylor and Francis Group, London, 2006).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.N. Lukash and P.B. Ivanov for the review of the paper and their remarks, as well as the referee for comments and suggestions.

Funding

The study was supported by the Russian Foundation for Basic Research, grant no. 19-02-00199.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Melikhov or E. V. Mikheeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melikhov, A.N., Mikheeva, E.V. Constraints on the Number of Primordial Black Holes Due to Interaction with Dust. Astron. Rep. 66, 387–392 (2022). https://doi.org/10.1134/S1063772922050043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922050043

Keywords:

Navigation