Skip to main content
Log in

Mathematical Model of Radiation Scattering on Quasi-Periodic Microstructure in Optical Fiber

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The quasi-periodic structure of micro cavities formed under the fiber can be used as a scatterer in medical applications and as a sensitive element of fiber-optic sensors. Mathematical modelling of radiation propagation in an optical fiber with a quasi-periodic structure of micro cavities will make it possible to estimate the distribution of scattered radiation intensity along the quasi-periodic structure, as well as the intensity of reflected and transmitted radiation. This will make it possible to estimate the shape, size and geometry of the micro cavities and their location in the fiber core, providing the most optimal parameters of the scattered light flux. Modelling was carried out in the COMSOL Multiphysics package. A section of SMF-28e single-mode fiber with micro heterogeneities placed in the core was considered and the intensity distribution from the side surface of the fiber depending on the shape and size of the defect was evaluated. The report presents the results of the study with defects of different sizes and types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Bufetov, I.A. and Dianov, E.M., Adv. Phys. Sci., 2005, vol. 175, no. 1, p. 100.

    Google Scholar 

  2. Shilov, I.V., Gavrilov, A.V., and Fedin, A.V., Bull. Russ. Acad. Sci.: Phys., 2012, vol. 76, p. 663. https://doi.org/10.3103/S1062873812060275

    Article  Google Scholar 

  3. Hitz, B., How to save fiber from ‘the fuse’, Photonics Spectra, 2004, vol. 38.

  4. Konin, Y.A., Starikova, V.A., Petukhova, A.Yu., et al., Appl. Photonics, 2023, vol. 10, no. 2, p. 42.

    Article  Google Scholar 

  5. Konin, Y.A., Petrov, A.A., Starikova, V.A., et al., Bull. Russ. Acad. Sci.: Phys., 2022, vol. 86, no. 1 (suppl.), p. S100. https://doi.org/10.3103/S1062873822700472

    Article  Google Scholar 

  6. Astrelin, V.T., Vorobyov, M.S., Kandaurov, I.V., et al., Bull. Russ. Acad. Sci.: Phys., 2019, vol. 83, p. 1392. https://doi.org/10.3103/S1062873819110030

    Article  Google Scholar 

  7. Dresvyansky, V.P., Kuznetsov, A.V., Enkbat, S., et al., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, p. 811. https://doi.org/10.3103/S1062873820070084

    Article  Google Scholar 

  8. Shuto, Y., Yanagi, S., Asakawa, S., Kobayashi, M., and Nagase, R., IEEE J. Quantum Electron., 2004, vol. 40, p. 1113.

    Article  ADS  Google Scholar 

  9. Shuto, Y., J. Inf. Math. Sci., 2020, vol. 12, p. 271.

    Google Scholar 

  10. Todoroki, S., Proc. 2015 Optical Fiber Communications Conference and Exhibition, Los Angeles, 2015, p. 1.

  11. Shuto, Y., J. Photonics, 2016, vol. 2016, p. 2781392.

    Article  Google Scholar 

  12. Bunkin, F.V. and Tribel’skii, M.K., Sov. Phys. Usp., 1980, vol. 23, no. 2, p. 105.

    Article  ADS  Google Scholar 

  13. Starikova, V.A., Konin, Y.A., Petukhova, A.Y., Aleshkina, S.S., Petrov, A.A., and Perminov, A.V., Algorithms, 2023, vol. 16, p. 331. https://doi.org/10.3390/a16070331

    Article  Google Scholar 

  14. Klubben, W.S., Logunov, S.L., Fewkes, E.J., Mooney, J., Then, P.M., Wigley, P.G., Schreiber, H., Matias, K., Wilson, C.J., and Ocampo, M., Proc. SPIE, 2016, vol. 9702, p. 970218. https://doi.org/10.1117/12.2218267

    Article  Google Scholar 

  15. Konin, Y.A., Scherbakova, V.A., Bulatov, M.I., Malkov, N.V., Lucenko, A.S., Starikov, S.S., Grachev, N., Perminov, A.V., and Petrov, A.A., J. Opt. Technol., 2021, vol. 88, no. 11, p. 672.

    Article  Google Scholar 

  16. Konin, Yu.A., Scherbakova, V.A., Perminov, A.V., and Petuhova, A.Yu., Opt. Commun., 2022, vol. 517, p. 128242. https://doi.org/10.1016/j.optcom.2022.128242

    Article  Google Scholar 

  17. Demin, V.A., Elektrodinamika i spetsial’naya teoriya otnositel’nosti (Electrodynamics and Special Theory of Relativity), Perm: Perm. Gos. Univ., 2021.

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 23-21-00169: https://rscf.ru/en/project/23-21-00169/ (accessed January 1, 2023), supervised by Dr. A.V. Perminov.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Y. Petukhova or A. V. Perminov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petukhova, A.Y., Perminov, A.V., Starikova, V.A. et al. Mathematical Model of Radiation Scattering on Quasi-Periodic Microstructure in Optical Fiber. Bull. Russ. Acad. Sci. Phys. 88, 1000–1009 (2024). https://doi.org/10.1134/S1062873824706986

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873824706986

Keywords:

Navigation