Skip to main content
Log in

Estimating Detection Depth of Hydrodynamic Structures in Water through Above-Surface Optical Information Analysis

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

We describe a method for estimating detection depth of underwater hydrodynamic structures in above-water optical data. In situ and remote sensing data, as well as numerical modeling of the formation of upward radiation from the water surface are used for the design. The results of this study improve the interpretation of spectral data obtained from remote sensing of water color, which is associated with vertical variations in the content of optically active substances. Additionally, the method allows for determining the thickness of the surface layer within which some hydrodynamic phenomena can be remotely detected in the visible spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Choi, J.K., Park, Y.J., Ahn, J.H., Lim, H.S., Eom, J., and Ryu, J.H., J. Geophys. Res: Oceans, 2012, vol. 117, no. C9, p. C09004. https://doi.org/10.1029/2012JC008046

    Article  ADS  Google Scholar 

  2. Kubryakov, A.A., Lishaev, P.N., Chepyzhenko, A.I., Aleskerova, A.A., Kubryakova, E.A., Medvedeva, A.V., and Stanichny, S.V., Oceanology, 2021, vol. 61, p. 159. https://doi.org/10.1134/S0001437021020107

    Article  ADS  Google Scholar 

  3. Salyuk, P.A., Mosharov, S.A., Frey, D.I., Kasyan, V.V., Ponomarev, V.I., Kalinina, O.Yu., Morozov, E.G., Latushkin, A.A., Sapozhnikov, Ph.V., Ostroumova, S.A., Lipinskaya, N.A., Budyansky, M.V., Chukmasov, P.V., Krechik, V.A., Uleysky, M.Yu., Faiman, P.A., Mayor, A.Yu., Mosharova, I.V., Chernetsky, A.D., Shkorba, S.P., and Shved, N.A., Water, 2022, vol. 14, no. 23, p. 3879. https://doi.org/10.3390/w14233879

    Article  Google Scholar 

  4. Mobley, C.D., Light and Water: Radiative Transfer in Natural Waters, San Diego: Academic, 1994.

    Google Scholar 

  5. Gordon H. R. Brown, O.B., Evans, R.H., Brown, J.W., Smith, R.C., Baker, K.S., and Clark, D.K., J. Geophys. Res.: Atmos., 1988, vol. 93, no. D9, p. 10909. https://doi.org/10.1029/JD093iD09p10909

    Article  ADS  Google Scholar 

  6. Zaneveld, J.R.V., Barnard, A.H., and Boss, E., Theor. Opt. Express, 2005, vol. 13, p. 9052. https://doi.org/10.1364/OPEX.13.009052

    Article  ADS  Google Scholar 

  7. Hedley, J.D. and Mobley, C.D., HYDROLIGHT 6.0 ECOLIGHT 6.0 Technical Documentation, Tiverton: Numerical Optics, 2019.

  8. Mobley, C.D., Chai, F., Xiu, P., andSundman, L.K., J. Geophys. Res., 2015, vol. 120, p. 875. https://doi.org/10.1002/2014JC010588

    Article  ADS  Google Scholar 

  9. Salyuk, P.A., Glukhovets, D.I., Lipinskaya, N.A., Moiseeva, N.A., Churilova, T.Ya., Ponomarev, V.I., Aglova, E.A., Artemiev, V.A., Latushkin, A.A., and Major, A.Yu., Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm., 2021, vol. 18, no. 6, p. 200. https://doi.org/10.21046/2070-7401-2021-18-6-200-213

    Article  Google Scholar 

  10. Lipinskaya, N.A., Salyuk, P.A., and Golik, I.A., Remote Sens., 2023, vol. 15, no. 23, p. 5600. https://doi.org/10.3390/rs15235600

    Article  ADS  Google Scholar 

  11. Mueller, J.L., Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4: Introduction, Background, and Conventions, Goddard Space Flight Center, 2003, vol. 1.

  12. Hu, C., Lee, Z., and Franz, B., J. Geophys. Res.: Oceans, 2012, vol. 117, no. C1, p. C01011. https://doi.org/10.1029/2011JC007395

    Article  ADS  Google Scholar 

  13. Tonizzo, A., Twardowski, M., McLean, S., Voss, K., Lewis, M., and Trees, C., Appl. Opt., 2017, vol. 56, p. 130. https://doi.org/10.1364/AO.56.000130

    Article  ADS  Google Scholar 

  14. Welvaert, M. and Rosseel, Y., PLoS One, 2013, vol. 8, p. e77089. https://doi.org/10.1371/journal.pone.0077089

    Article  ADS  Google Scholar 

  15. Matkovic, K., Neumann, L., Neumann, A., Psik, T., and Purgathofer, W., Comput. Aesthet. Graph., 2005, vol. 9, p. 159. https://doi.org/10.2312/COMPAESTH/COMPAESTH05/159-167

    Article  Google Scholar 

  16. O’Reilly, J.E. Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A., Kahru, M., and McClain, C., J. Geophys. Res.: Oceans, 1998, vol. 103, no. C11, p. 24937. https://doi.org/10.1029/98JC02160

    Article  ADS  Google Scholar 

  17. Nosov, V.N., Kaledin, S.B., Ivanov, S.G., and Timonin, V.I., Opt. Spectrosc., 2019, vol. 127, p. 669. https://doi.org/10.21883/OS.2019.10.48366.165-19

    Article  ADS  Google Scholar 

  18. Pershin, S.M., Brysev, A.P., Grishin, M.Y., Lednev V.N., Bunkin A.F., and Klopotov R.V., Bull. Russ. Acad. Sci.: Phys., 2021, vol. 85, p. 665. https://doi.org/10.3103/S1062873821060174

    Article  Google Scholar 

  19. Bukin, O.A., Pavlov, A.N., Saluk, P.A., Golik, S.S., Ilin, A.A., and Bubnovskii, A.Yu., Opt. Atmos. Okeana, 2010, vol. 23, no. 10, p. 926.

    Google Scholar 

  20. Peshekhonov, V.G., Mashoshin, A.I., Shafranyuk, A.V., Korchak, V.Yu., Kovalenko, V.V., Luchinin, A.G., Malekhanov, A.I., Mareev, E.A., Smirnov, I.P., Khil’ko, A.I., Kravchenko, V.N., and Prikhod’ko, I.M., Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, p. 1229. https://doi.org/10.3103/S1062873816100130

    Article  Google Scholar 

  21. Makarov, D.V., Uleysky, M.Yu., and Prants, S.V., Tech. Phys. Lett., 2003, vol. 29, no. 5, p. 430. https://doi.org/10.1134/1.1579816

    Article  ADS  Google Scholar 

  22. Ermakov, S.A., Kapustin, I.A., and Sergievskaya, I.A., Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, p. 1695. https://doi.org/10.3103/S1062873810120166

    Article  Google Scholar 

Download references

Funding

The presented study is performed within the state tasks of the Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, and projects no. 124022100080-0, 124042300003-5.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Lipinskaya or P. A. Salyuk.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipinskaya, N.A., Salyuk, P.A. Estimating Detection Depth of Hydrodynamic Structures in Water through Above-Surface Optical Information Analysis. Bull. Russ. Acad. Sci. Phys. 88, 991–995 (2024). https://doi.org/10.1134/S1062873824706962

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873824706962

Keywords:

Navigation