Skip to main content
Log in

Peptide Isolated from Leptospermum flavens Sm. Inhibits Human Glutathione Transferases π (hGSTP) Activity and Enhances the Cytotoxicity of Doxorubicin towards HT-29 Cell Line

  • CELL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Glutathione transferase Pi (GST-P) reportedly overexpressed markedly in cancer cell lines. It was correlated to the resistance towards drugs used in chemotherapy treatment. The study demonstrated the isolation of peptide as potential inhibitor to the enzyme. Glutathione transferase Pi (GST-P) was purified from human colon adenocarcinoma HT-29 cell line using glutathione (GSH)-affinity chromatography. Active components presence in ethanolic extract (50% ethanol) of leaves Leptospermum flavescens Sm. was shown possessing inhibitory property (IC50 of 0.088 mg/mL) towards GST-P in vitro. Further fractionation using polyamide the 50% methanol in 2% acetic acid eluate possessed an inhibitory property at IC50 of 0.191 mg/mL. In the study the IC50 values of doxorubicin are 0.788 and 0.816 μg/mL on HT-29 and MRC-5 cell lines respectively while IC50 values of cisplatin were at 9.49 and 4.07 μg/mL on HT-29 and MRC-5 cell lines respectively. The 50% methanol eluate has significantly non-toxic to both of the cell lines with 100% cell viability at more than 100 μg/mL sample applied. In combination with doxorubicin, 50% methanol eluate enhanced cytotoxicity of the drug towards HT-29 by reduction of IC50 value significantly to 66%. The eluate however only reduced the IC50 to 11% when combined with cisplatin. The study indicates that the eluate can potentiate cytotoxicity of doxorubicin on HT-29 cell line and this effect is correlated to the ability of the eluate to inhibit GST-P in vitro. The purified active molecule was a peptide with molecular weight of 3.5 kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Alias, Z. and Clark, A.G., Studies on the glutathione S‑transferase proteome of adult Drosophila melanogaster: responsiveness to chemical challenge, Proteomics, 2007, vol. 7, no. 19, pp. 3618–3628. https://doi.org/10.1002/pmic.200700070

    Article  CAS  PubMed  Google Scholar 

  2. Chang, Y.S. and Ali, R., Inventory, documentation and status of medicinal plants research in Malaysia, in Medicinal Plants Research in Asia, Batugal, P.A., Kanniah, J., Lee, S.Y., and Oliver, J.T., Eds., Serdang, Selangor DE, Malaysia, 2004, vol. 1, pp. 120–126.

    Google Scholar 

  3. Ciaccio, P.J., Shen, H., Jaiswal, A.K., Lyttle, M.H., and Tew, K.D., Modulation of detoxification gene expression in human colon HT29 cells by glutathione-S-transferase inhibitors, Mol. Pharmacol., 1995, vol. 48, pp. 639–647.

    CAS  PubMed  Google Scholar 

  4. Claeson, P., Göransson, U., Johansson, S., Luijendijk, T., and Bohlin, L., Fractionation protocol for the isolation of polypeptides from plant biomass, J. Nat. Prod., 1998, vol. 61, no. 1, pp. 77–81. https://doi.org/10.1021/np970342r

    Article  CAS  PubMed  Google Scholar 

  5. Datta, K. and Kulkami, A.P., Inhibition of mammalian hepatic glutathione S-transferases by acetylenic fatty acids, Toxicol. Lett., 1994, vol. 73, no. 2, pp. 157–165. https://doi.org/10.1016/0378-4274(94)90105-8

    Article  CAS  PubMed  Google Scholar 

  6. Dong, S., Sha, H., Xu, X., Hu, T., Lou, R., Li, H., Wu, J., Dan, C., and Feng, J., Glutathione π: potential role in antitumor therapy, Drug Des., Dev. Ther., 2018, vol. 12, pp. 3535–3547. https://doi.org/10.2147/DDDT.S169833

    Article  CAS  Google Scholar 

  7. Dragani, B., Iannarelli, V., Allocati, N., Masulli, M., Cicconetti, M., and Aceto, A., Irreversible thermal denaturation of glutathione transferase P1-1. Evidence for varying structural stability of different domains, Int. J. Biochem. Cell Biol., 1998, vol. 30, no. 1, pp. 155–163. https://doi.org/10.1016/s1357-2725(97)00071-x

    Article  CAS  Google Scholar 

  8. Fakae, B.B., Campbell, A.M., Barrett, J., Scott, I.M., Teesdale-Spittle, P.H., Liebau, E., and Brophy, P.M., Inhibition of glutathione S-transferase (GSTs) from parasitic nematodes by extracts from traditional Nigerian medicinal plants, Phytotherapy Res., 2000, vol. 14, pp. 630–634. https://doi.org/10.1002/1099-1573(200012)

    Article  CAS  Google Scholar 

  9. Habig, W.H., Pabst, M.J., and Jakoby, W.B., Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation, J. Biol. Chem., 1974, vol. 249, no. 22, pp. 7130–7139. https://doi.org/10.1016/s0021-9258(19)42083-8

    Article  CAS  PubMed  Google Scholar 

  10. Kitteringham, N.R., Palmer, L., Owen, A., Lian, L., Jenkins, R., Dowdall, S., Gilmore, I., Park, B.K., and Goldring, C.E., Detection and biochemical characterisation of a novel polymorphism in the human GSTP1 gene, Biochim. Biophys. Acta, Gen. Subj., 2007, vol. 1770, no. 8, pp. 1240–1247. https://doi.org/10.1016/j.bbagen.2007.05.001

    Article  CAS  Google Scholar 

  11. Kuga, T., Sakamaki, S., Matsunaga, T., Hirayama, Ya., Kuroda, H., Takahashi, Ya., Kusakabe, T., Kato, I., and Niitsu, Yo., Fibronectin fragment-facilitated retroviral transfer of the glutathione-S-transferase π gene into CD34+ cells to protect them against alkylating agents, Hum. Gene Ther., 1997, vol. 8, no. 16, pp. 1901–1910. https://doi.org/10.1089/hum.1997.8.16-1901

    Article  CAS  PubMed  Google Scholar 

  12. Laemmli, U.K., Cleavage of Structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  13. Liebau, E., Bergmann, B., Campbell, A.M., Teesdale-Spittle, P., Brophy, P.M., Lüersen, K., and Walter, R.D., The glutathione S-transferase from Plasmodium falciparum, Mol. Biochem. Parasitol., 2002, vol. 124, nos. 1–2, pp. 85–90. https://doi.org/10.1016/s0166-6851(02)00160-3

    Article  CAS  PubMed  Google Scholar 

  14. Mannervik, B., Alin, P., Guthenberg, C., Jensson, H., Tahir, M.K., Warholm, M., and Jörnvall, H., Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties, Proc. Natl. Acad. Sci. U. S. A., 1985, vol. 82, no. 21, pp. 7202–7206. https://doi.org/10.1073/pnas.82.21.7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mays, J.B. and Benson, A.M., Inhibition of mouse glutathione transferases and glutathione peroxidase II by dicumarol and other ligands, Biochem. Pharmacol., 1992, vol. 44, no. 5, pp. 921–925. https://doi.org/10.1016/0006-2952(92)90124-2

    Article  CAS  PubMed  Google Scholar 

  16. Mitra, A., Govindwar, S., and Kulkarni, A.P., Inhibition of hepatic glutathione-S-transferases by fatty acids and fatty acid esters, Toxicol. Lett., 1991, vol. 58, no. 2, pp. 135–141. https://doi.org/10.1016/0378-4274(91)90167-5

    Article  CAS  PubMed  Google Scholar 

  17. Morgan, A.S., Tew, K.D., Kauvar, L.M., and Ciaccio, F.J., Isozyme-specific glutathione S-transferase inhibitors potentiate drug sensitivity in cultured human tumor cell lines, Cancer Chemother. Pharmacol., 1996, vol. 37, no. 4, pp. 363–370. https://doi.org/10.1007/s002800050398

    Article  CAS  PubMed  Google Scholar 

  18. Moscow, J.A., Townsend, A.J., and Cowan, K.H., Elevation of pi class glutathione S-transferase activity in human breast cancer cells by transfection of the GST-P gene and its effect on sensitivity to toxins, Mol. Pharmacol., 1989, vol. 36, pp. 22–28.

    CAS  PubMed  Google Scholar 

  19. Mukanganyama, S., Bezabih, M., Robert, M., Ngadjui, B.T., Kapche, G.F.W., Ngandeu, F., and Abegaz, B., The evaluation of novel natural products as inhibitors of human glutathione transferase P1-1, J. Enzyme Inhib. Med. Chem., 2011, vol. 26, no. 4, pp. 460–467. https://doi.org/10.3109/14756366.2010.526769

    Article  CAS  PubMed  Google Scholar 

  20. Nagourney, R.A., Messenger, J.C., Kern, D.H., and Weisenthal, L.M., Enhancement of anthracycline and alkylator cytotoxicity by ethacrynic acid in primary cultures of human tissues, Cancer Chemother. Pharmacol., 1990, vol. 26, no. 5, pp. 318–322. https://doi.org/10.1007/bf02897285

    Article  CAS  PubMed  Google Scholar 

  21. Nakagawa, K., Saijo, N., Tsuchida, S., Sakai, M., Tsunokawa, Y., Yokota, J., Muramatsu, M., Sato, K., Terada, M., and Tew, K.D., Glutathione-S-transferase pi as a determinant of drug resistance in transfectant cell lines, J. Biol. Chem., 1990, vol. 265, no. 8, pp. 4296–4301. https://doi.org/10.1016/s0021-9258(19)39562-6

    Article  CAS  PubMed  Google Scholar 

  22. Niitsu, Y., Takahashi, Y., Ban, N., Takayama, T., Saito, T., Katahira, T., Umetsu, Y., Nakajima, T., Ohi, M., Kuga, T., Sakamaki, S., Matsunaga, T., Hirayama, Y., Kuroda, H., Homma, H., Kato, J., and Kogawa, K., A proof of glutathione S-transferase-π-related multidrug resistance by transfer of antisense gene to cancer cells and sense gene to bone marrow stem cell, Chem.-Biol. Interact., 1998, vol. 111, pp. 325–332. https://doi.org/10.1016/s0009-2797(97)00169-5

    Article  PubMed  Google Scholar 

  23. Ploemen, J.H.T.M., Van Ommen, B., Bogaards, J.J.P., and Van Bladeren, P.J., Ethacrynic acid and its glutathione conjugate as inhibitors of glutathione S-transferases, Xenobiotica, 1993, vol. 23, no. 8, pp. 913–923. https://doi.org/10.3109/00498259309059418

    Article  CAS  PubMed  Google Scholar 

  24. Schultz, M., Dutta, S., and Tew, K.D., Inhibitors of glutathione S-transferases as therapeutic agents, Adv. Drug Delivery Rev., 1997, vol. 26, nos. 2–3, pp. 91–104. https://doi.org/10.1016/s0169-409x(97)00029-x

    Article  CAS  Google Scholar 

  25. Sheehan, D., Meade, G., Foley, V.M., and Dowd, C.A., Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily, Biochem. J., 2001, vol. 360, no. 1, pp. 1–16. https://doi.org/10.1042/0264-6021:3600001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shehu, D., Abdullahi, N., and Alias, Z., Cytosolic glutathione S-transferase in bacteria: a review, Pol. J. Environ. Stud., 2019, vol. 28, no. 2, pp. 515–528. https://doi.org/10.15244/pjoes/85200

    Article  CAS  Google Scholar 

  27. Shen, H., Ranganathan, S., Kuzmich, S., and Tew, K.D., Influence of ethacrynic acid on glutathione S-transferase π transcript and protein half-lives in human colon cancer cells, Biochem. Pharmacol., 2003, vol. 50, no. 8, pp. 1233–1238. https://doi.org/10.1016/0006-2952(95)00263-y

    Article  Google Scholar 

  28. Singh, R.R. and Reindl, K.M., Glutathione transferases in cancer, Antioxidants, 2021, vol. 10, p. 701. https://doi.org/10.3390/antiox10050701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tashiro, K., Asakura, T., Fujiwara, C., Ohkawa, K., and Ishibashi, Y., Glutathione-S-transferase-π expression regulates sensitivity to glutathione-doxorubicin conjugate, Anticancer Drugs, 2001, vol. 12, pp. 707–712.

    Article  CAS  PubMed  Google Scholar 

  30. Tew, K.D., Bomber, A.M., and Hoffman, S.J., Ethacrynic acid and piriprost as enhancers of cytotoxicity in drug resistant and sensitive cell lines, Cancer Res., 1988, vol. 48, pp. 3622–3625.

    CAS  PubMed  Google Scholar 

  31. Townsend, D.M. and Tew, K.D., The role of glutathione S-transferase in anti-cancer drug resistance, Oncogene, 2003, vol. 22, pp. 7369–7375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilson, J.J. and Lippard, S.J., Synthesis, characterization, and cytotoxicity of platinum(IV) carbamate complexes, Inorg. Chem., 2011, vol. 50, pp. 3103–3115. https://doi.org/10.1021/ic2000816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, M. and Fang, F., Prevention of chemical carcinogenesis using glutathione S-transferase-pi (GST-pi), Chin. Sci. Bull., 1999, vol. 44, pp. 2168–2174.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to acknowledge the help and advice from Prof. Datin Dr Seri Nurestri Abd Malek for making this work successful.

Funding

This work was supported by University Malaya Research Grant (UMRG, RG444-12HTM) and PPP Research Grant (PV033/2011B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Alias.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The human colon adenocarcinoma HT-29 cell line and fetal lung fibroblast MRC-5 cell line used in this study were purchased from American Type Culture Collection (ATCC, USA). This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phang, W.M., Alias, Z. & Aminudin, N. Peptide Isolated from Leptospermum flavens Sm. Inhibits Human Glutathione Transferases π (hGSTP) Activity and Enhances the Cytotoxicity of Doxorubicin towards HT-29 Cell Line. Biol Bull Russ Acad Sci 51, 829–834 (2024). https://doi.org/10.1134/S1062359023605001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023605001

Key words:

Navigation