Skip to main content
Log in

Calculation of the Non-Gravitational A2 Parameter Using Ground-Based Observations of the Apparent Close Approaches between Near-Earth Asteroids and Gaia Stars

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The Yarkovsky effect is one of the noticeable factors in the orbital evolution of near-Earth asteroids (NEAs). The A2 non-gravitational parameter describes the corresponding acceleration in the NEA motion model. This parameter can be derived from astrometric observations of the NEA. We present the results of astrometric observations of two NEAs (2010 XC15 and 2014 HK129). The measurements were performed with the MTM-500M telescope (Mountain Astronomical Station of the Pulkovo Observatory). The modified Gaia star apparent approach technique was applied. As a result, the astrometric accuracy of our observations reached the 0.05 arcsec level. It allowed us to estimate the A2 values of the 2010 XC15 asteroid: –139.5 × 10–15 ± 20.2 × 10–15 au/d2. It is in good agreement with the NASA JPL estimate for this asteroid. The 2014 HK129 A2 parameter formal value extracted from our data is 61.3 × 10–15 ± 1583.4 × 10–15 au/d2. Introduction of this A2 value into the asteroid motion model provides a significant decrease (about 0.05–0.1 arcsec) of the (O–C) values for the first epoch of 2014 HK129 observations. It can be considered as faint evidence of the reality of Yarkovsky drift for the 2014 HK129 asteroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bikulova, D.A., Pulkovo observations of apparent close approaches between near-Earth asteroids and the Gaia stars in 2019–2020, Planet. Space Sci., 2021, vol. 204, p. 105245. https://doi.org/10.1016/j.pss.2021.105245

    Article  Google Scholar 

  2. Dziadura, K., Spoto, F., Oszkiewicz, D., Carry, B., Bartczak, P., and Tanga, P., Computing the Yarkovsky effect for asteroids in Gaia DR3, in 16th Europlanet Science Congress 2022, Palacio de Congresos de Granada, Spain, September 18–23, 2022. https://www.epsc2022.eu/. https://doi.org/10.5194/epsc2022-64

  3. Dziadura, K., Oszkiewicz, D., and Bartczak, P., Investigating the most promising Yarkovsky candidates using Gaia DR2 astrometry, Icarus, 2022, vol. 383, p.115040. https://doi.org/10.1016/j.icarus.2022.115040

    Article  Google Scholar 

  4. Farnocchia, D., Chesley, S.R., Chamberlin, A.B., and Tholen, D.J., Star catalog position and proper motion corrections in asteroid astrometry, Icarus, 2015, vol. 245, pp. 94–111. doi 139.https://doi.org/10.1016/j.icarus.2014.07.033

  5. Gorshanov, D.L., Devyatkin, A.V., Bashakova, E.A., Ivanov, A.V., Karashevich, S.V., Kouprianov, V.V., L’vov, V.N., et al., Observations of asteroids with Pulkovo observatory ZA-320M and MTM-500M telescopes for GAIA FUN SSO program, in Proceedings of GAIA-FUN-SSO 2012 Second ‘Gaia Follow-up Network for Solar System Objects’ Workshop, Institut de mécanique céleste et de calcul des éphémérides Observatoire de Paris, September 19–21, 2012, p. 73. https://gaiafunsso.imcce.fr.

  6. Holman, M.J., Akmal, A., Farnocchia, D., Rein, H., Payne, M.J., Weryk, R., Tamayo, D., et al., ASSIST: An Ephemeris-quality test-particle integrator, Planet. Sci. J., 2023, vol. 4, no. 4, p. 69. https://doi.org/10.3847/PSJ/acc9a9

    Article  Google Scholar 

  7. Marsden, B.G., Sekanina Z., and Yeomans D.K., Comets and nongravitational forces. V, Astron. J., 1973, vol. 78, pp. 211–225. https://doi.org/10.1086/111402

    Article  ADS  Google Scholar 

  8. Martyusheva, A.A. and Melnikov, A.V., On the magnitude of the Yarkovsky effect in the dynamics of potentially hazardous asteroids, Publications of the Pulkovo Observatory, 2023, no. 228, pp. 147–156. https://doi.org/10.31725/0367-7966-2023-228-11

  9. Michel, P., Morbidelli, A., and Bottke W., Origin and dynamics of Near Earth Objects, Comptes Rendus Physique, 2005, vol. 6, pp. 291–301. https://doi.org/10.1016/j.crhy.2004.12.013

    Article  ADS  Google Scholar 

  10. Park, R.S., Folkner, W.M, Williams, J.G., and Boggs, D.H., The JPL Planetary and Lunar Ephemerides DE440 and DE441, Astron. J., 2021, vol. 161, no. 3, p. 105. https://doi.org/10.3847/1538-3881/abd414

    Article  ADS  Google Scholar 

  11. Rein, H. and Spiegel, D.S., IAS15: A fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits, Mon. Not. R. Astron. Soc., 2015, vol. 446. pp. 1424–1437. https://doi.org/10.1093/mnras/stu2164

    Article  ADS  Google Scholar 

  12. Tanga, P., Pauwels, T., Mignard, F., Muinonen, K., Cellino, A., David, P., Hestroffer, D., et al., Gaia Data Release 3. The Solar System survey, Astron. Astrophys., 2023, vol. 674, p. A12. https://doi.org/10.1051/0004-6361/202243796

    Article  Google Scholar 

  13. Vallenari, A., Brown, A.G.A., Prusti, T., de Bruijne, J.H.J., Arenou, F., Babusiaux, C., Biermann, M., Creevey, O.L., Ducourant, C., et al., Gaia Data Release 3. Summary of the content and survey properties, Astron. Astrophys., 2023, vol. 674, p. A1. https://doi.org/10.1051/0004-6361/202243940

    Article  Google Scholar 

  14. Vokrouhlicky, D., A complete linear model for the Yarkovsky thermal force on spherical asteroid fragments, Astron. Astrophys., 1999, vol. 344, pp. 362–366.

    ADS  Google Scholar 

  15. Vokrouhlicky, D., Milani, A., and Chesley, S.R., Yarkovsky Effect on small near-Earth asteroids: Mathematical formulation and examples, Icarus, 2000, vol. 148, pp. 118–138. https://doi.org/10.1006/icar.2000.6469

    Article  ADS  Google Scholar 

  16. Yarkovsky, I.O., Plotnost’ svetovogo efira i okazyvaemoe im soprotivlenie dvizheniyu (The Density of the Light Ether and the Resistance It Provides to Movement), Bryansk: Yudin’s typography, 1901.

Download references

ACKNOWLEDGMENTS

Authors express their thanks to Alexander Devyatkin and other observers of the MTM-500M telescope.

Funding

The study was funded by a grant Russian Science Foundation 23-22-00306 “The synergy of perturbances between the rotational and orbital motions of the asteroids approaching planets”, https://rscf.ru/en/project/23-22-00306/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Khovrichev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khovrichev, M.Y., Bikulova, D.A. & Gorshanov, D.L. Calculation of the Non-Gravitational A2 Parameter Using Ground-Based Observations of the Apparent Close Approaches between Near-Earth Asteroids and Gaia Stars. Sol Syst Res 58, 487–493 (2024). https://doi.org/10.1134/S003809462470031X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003809462470031X

Keywords:

Navigation