Skip to main content
Log in

The Evolutionary State of Near-Earth Comet 7P/Pons–Winnecke

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

7P/Pons–Winnecke is a near-Earth short-period comet of a moderate activity level. In this paper, we present the analysis of observations performed during a favorable apparition of the comet in 2021, indicating its status as a transitional ageing comet. The sublimation starts when the comet is close to the Sun, at a distance of RON = 1.76 ± 0.1 AU, and continues for ~13 months, which is apparently caused by residual reserves of water ice. The dust production rate of the comet is not high even at perihelion (<150 kg/s), and the 1.4-percent active portion of the nucleus area is sufficient to provide this mass loss. The photometric age of the comet is PAGE = 54.4 comet years; being combined with a light curve amplitude of ASEC(1;1) = 5.5m, this age corresponds to the state of a transitional middle-aged comet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Alí-Lagoa, V., Delbo, M., and Libourel, G., Rapid temperature changes and the early activity on comet 67P/Churyumov–Gerasimenko, Astrophys. J. Lett., 2015, vol. 810, no. 2, p. L22. Band Conversion. https://www.minorplanetcenter.net/iau/info/BandConversion.txt.

    Article  ADS  Google Scholar 

  2. Bryssinck, E., Optical filters for Afρ-observations of comets. http://www.astronomie.be/erik.bryssinck/filters_for_afrho.html. Accessed September 1, 2023.

  3. Coulson, I.M., Cordiner, M.A., Kuan, Y.J., Tseng, W.L., Chuang, Y.L., and Lin, Z.Y., JCMT spectral and continuum imaging of comet 252P/LINEAR, Astron. J., 2017, vol. 153, no. 4, pp. 153–169.

    Article  Google Scholar 

  4. Dymock, R., The H and G magnitude system for asteroids, J. British Astron. Assoc., 2007, vol. 117, no. 6, pp. 342–343.

    ADS  Google Scholar 

  5. Fernández, J.A., Gallardo, T., and Brunini, A., Are there many inactive Jupiter-family comets among the near-Earth asteroid population?, Icarus, 2002, vol. 159, no. 2, pp. 358–368.

    Article  ADS  Google Scholar 

  6. Fernández, Y.R., Lowry, S.C., Weissman, P.R., Mueller, B.E.A., Samarasinha, N.H., Belton, M.J.S., and Meech, K.J., New near-aphelion light curves of Comet 2P/Encke, Icarus, 2005, vol. 175, no. 1, pp. 194–214.

    Article  ADS  Google Scholar 

  7. Ferrín, I., Atlas of secular light curves of comets, Planet. Space Sci., 2010, vol. 58, no. 3, pp. 365–391.

    Article  ADS  Google Scholar 

  8. Faulkes Telescope Project. https://www.faulkes.com/faulkes-telescope-project.

  9. Fulle, M., Bertini, I., Della Corte, V., Güttler, C., Ivanovski, S., La Forgia, F., Lasue, J., Levasseur-Regourd, A.C., Marzari, F., Moreno, F., Mottola, S., Naletto, G., Palumbo, P., Rinaldi, G., Rotundi, A., and 32 co-authors, The phase function and density of the dust observed at comet 67P/Churyumov–Gerasimenko, Mon. Not. R. Astron. Soc., 2018, vol. 476, no. 2, pp. 2835–2839.

    Article  ADS  Google Scholar 

  10. Jewitt, D. and Matthews, H., Particulate mass loss from comet Hale-Bopp, Astron. J., 1999, vol. 117, no. 2, pp. 1056–1062.

    Article  ADS  Google Scholar 

  11. Jewitt, D., Properties of near-Sun asteroids, Astron. J., 2013, vol. 145, no. 5, p. 133.

    Article  ADS  Google Scholar 

  12. Jewitt, D., Li, J., Agarwal, J., Weaver, H., Mutchler, M., and Larson, S., Nucleus and mass loss in active asteroid 313P/Gibbs, Astron. J., 2015, vol. 150, no. 3, p. 76.

    Article  ADS  Google Scholar 

  13. Jewitt, D., Hui, M.T., Mutchler, M., Weaver, H., Li, J., and Agarwal, J., A comet active beyond the crystallization zone, Astrophys. J. Lett., 2017, vol. 847, no. 2, p. L19.

    Article  ADS  Google Scholar 

  14. Jewitt, D., Agarwal, J., Hui, M.T., Mutchler, M., and Weaver, H., Distant comet C/2017 K2 and the cohesion bottleneck, Astron. J., 2019, vol. 157, no. 2, p. 65.

    Article  ADS  Google Scholar 

  15. Jockers, K., Kiselev, N., Bonev, T., Rosenbush, V., Shakhovskoy, N., Kolesnikov, S., Efimov, Yu., Shakhovskoy, D., and Antonyuk, K., CCD imaging and aperture polarimetry of comet 2P/Encke: Are there two polarimetric classes of comets?, Astron. Astrophys., 2005, vol. 441, no. 2, pp. 773–782.

    Article  ADS  Google Scholar 

  16. Hicks, M.D. and Bauer, J.M., P/2006 HR30 (Siding Spring): A low-activity comet in near-Earth space, Astrophys. J. Lett., 2007, vol. 662, no. 1, pp. L47–L50.

    Article  ADS  Google Scholar 

  17. Holmberg, J., Flynn, C., and Portinari, L., The colours of the Sun, Mon. Not. R. Astron. Soc., 2006, vol. 367, no. 2, pp. 449–453.

    Article  ADS  Google Scholar 

  18. Hsieh, H.H., Jewitt, D.C., and Fernández, Y.R., The strange case of 133P/Elst-Pizarro: a comet among the asteroids, Astron. J., 2004, vol. 127, no. 5, pp. 2997–3017.

    Article  ADS  Google Scholar 

  19. Hsieh, H.H., Jewitt, D., and Ishiguro, M., Physical properties of main-belt comet P/2005 U1 (Read), Astron. J., 2008, vol. 137, no. 1, pp. 157–168.

    Article  ADS  Google Scholar 

  20. Ishiguro, M., Cometary dust trail associated with Rosetta mission target: 67P/Churyumov–Gerasimenko, Icarus, 2008, vol. 193, no. 1, pp. 96–104.

    Article  ADS  Google Scholar 

  21. Kelley, M.S.P., Small outbursts of comet 7P/Pons-Winnecke, Comets-Ml mailing list, 2021, no. 29575. https://groups.io/g/comets-ml/message/29575.

  22. Kelley, M.S.P. and Lister, T., Small apparent outbursts of comet 7P/Pons-Winnecke, Astronomer’s Telegram, 2021, no. 14486. https://www.astronomerstelegram.org/?read=14486.

  23. Kelley, M.S., Ye, Q., Donaldson, A., Murphy, B., Snodgrass, C., and Opitom, C., Apparent outburst of Comet 7P/Pons-Winnecke, Astronomer’s Telegram, 2022, no. 15772. https://www.astronomerstelegram.org/? read=15772.

  24. Kinoshita, K., Comet 7P/Pons-Winnecke orbit, Comet orbit home page, 2016. https://jcometobs.web. fc2.com/pcmtn/0007p.htm.

  25. Lamy, P.L., Toth, I., Fernández, Y.L., and Weaver, H.A., The sizes, shapes, albedos, and colors of cometary nuclei, in Comets II, Festou, M.H., Keller, U., and Weaver, H.A., Eds., Tucson: Univ. Arizona Press, 2004, pp. 223–264.

    Google Scholar 

  26. Lisse, C.M., Fernández, Y.R., A’Hearn, M.F., Grün, E., Käufl, H.U., Osip, D.J., Lien, D.J., Kostiuk, T., Peschke, S.B., and Walker, R.G., A tale of two very different comets: ISO and MSX measurements of dust emission from 126P/IRAS (1996) and 2P/Encke (1997), Icarus, 2004, vol. 171, no. 2, pp. 444–462.

    Article  ADS  Google Scholar 

  27. Marschall, R., Markkanen, J., Gerig, S.B., Pinzón-Rodríguez, O., Thomas, N., and Wu, J.S., The dust-to-gas ratio, size distribution, and dust fall-back fraction of comet 67P/Churyumov‒Gerasimenko: Inferences from linking the optical and dynamical properties of the inner comae, Front. Phys., 2020, vol. 8, pp. 227–242.

    Article  Google Scholar 

  28. McDonnell, J., Alexander, W.M., Burton, W.M., Bussoletti, E., Clark, D.H., Grard, R.J.L., Grün, E., Hanner, M.S., Hughes, D.W., Igenbergs, E., Kuczera, H., and 18 co-authors, Dust density and mass distribution near comet Halley from Giotto observations, Nature, 1986, vol. 321, suppl. 6067, pp. 338–341.

    Article  ADS  Google Scholar 

  29. Meech, K.J., Jewitt, D., and Ricker, G.R., Early photometry of comet P/Halley: Development of the coma, Icarus, 1986, vol. 66, no. 3, pp. 561–574.

    Article  ADS  Google Scholar 

  30. Meech, K.J., Schambeau, C.A., Sorli, K., Kleyna, J.T., Micheli, M., Bauer, J., Denneau, L., Keane, J.V., Toller, E., Wainscoat, R., Hainaut, O., Bhatt, B., Sahu, D., Yang, B., Kramer, E., and Magnier, G., Beginning of activity in long-period comet C/2015 ER61 (PANSTARRS), Astron. J., 2017, vol. 153, no. 5, p. 206.

    Article  ADS  Google Scholar 

  31. Moreno, F., Pozuelos, F., Aceituno, F., Casanova, V., Sota, A., Castellano, J., and Reina, E., Comet 22P/Kopff: Dust environment and grain ejection anisotropy from visible and infrared observations, Astrophys. J., 2012, vol. 752, no. 2, p. 136.

    Article  ADS  Google Scholar 

  32. Prialnik, D. and Bar-Nun, A., Crystallization of amorphous ice as the cause of comet P/Halley’s outburst at 14 AU, Astron. Astrophys., 1992, vol. 258, pp. L9–L12.

    ADS  Google Scholar 

  33. Sierks, H., Barbieri, C., Lamy, P.L., Rodrigo, R., Koschny, D., Rickman, H., Keller, H.U., Agarwal, J., A’Hearn, M., Angrilli, F., Auger, A.-T., and 54 co-authors, On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko, Science, 2015, vol. 347, no. 6220, p. aaa1044.

    Article  Google Scholar 

  34. Schleicher, D., Composite Dust Phase Function for Comets, 2010. https://asteroid.lowell.edu/comet/dustphase/.

  35. Snodgrass, C., Fitzsimmons, A., and Lowry, S.C., The nuclei of comets 7P/Pons-Winnecke, 14P/Wolf and 92P/Sanguin, Astron. Astrophys., 2005, vol. 444, no. 1, pp. 287–295.

    Article  ADS  Google Scholar 

  36. Solontoi, M., Ivezić, Ž., Jurić, M., Becker, A.C., Jones, L., West, A.A., Kent, S., Lupton, R.H., Claire, M., Knapp, G.R., Quinn, T., Gunn, J.E., and Schneider, D.P., Ensemble properties of comets in the Sloan Digital Sky Survey, Icarus, 2012, vol. 218, no. 1, pp. 571–584.

    Article  ADS  Google Scholar 

  37. The AAVSO Photometric All-Sky Survey DR10. https://www.aavso.org/apass.

  38. Transformations between SDSS magnitudes and other systems Introduction. http://www.sdss3.org/dr8/algorithms/sdssUBVRITransform.php.

  39. Vsekhsvyatskii, S.K., Fizicheskie kharakteristiki komet (Physical Characteristics of Comets), Moscow: Gos. izd. fiz.-mat. lit., 1958.

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Terskol Observatory, Shared Service Center of the Astronomical Institute, Russian Academy of Sciences (INASAN), for providing the possibility of using the data obtained with the Zeiss-1000 telescope at the Simeiz Observatory. The authors also thank amateur astronomers Michael Jäger and Tony Angel for the opportunity to use their images of the comet to determine the dust coma parameters; and the Faulkes Telescope Project, on one of the telescopes of which the second image was acquired, and the Comet Chasers team, the member of which is T. Angel, are appreciated.

Funding

This work was supported by the budget of scientific organizations. No additional grants were received to conduct or supervise this particular study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Novichonok.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Petrova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novichonok, A.O., Shmal’ts, A.A., Nazarov, S.V. et al. The Evolutionary State of Near-Earth Comet 7P/Pons–Winnecke. Sol Syst Res 58, 456–468 (2024). https://doi.org/10.1134/S003809462470028X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003809462470028X

Keywords:

Navigation