Skip to main content
Log in

Non-gravitational Mechanism of Comets’ Ejection from the Oort Cloud Due to Cometary Outbursts

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Cometary nuclei located in the Oort cloud accumulate high concentration of radicals in surface layers under cosmic ray irradiation at low temperatures. Recombination of radicals induced by an increase in the surface temperature of a comet by a close passing star, O/B stars, or nearby supernovae leads to the heating of the ice layer with the releasing of volatiles from the amorphous ice. When high gas pressure builds up beneath the cometary surface, dust and gas are ejected. The resulting jet of gas and dust can change the comet’s orbit in the Oort cloud. The studied non-gravitational mechanism can effectively expel comets with a radius of ≤1 km from the Oort cloud into the inner part of the Solar system. The total effect of cometary outbursts on the stability of cometary orbits during the evolution of Solar system can result in a decrease in the number of long-period small-radius comets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Bar-Nun, A., Herman, G., Laufer, D., and Rappaport, M.L., Trapping and release of gases by water ice and implications for icy bodies, Icarus, 1985, vol. 63, pp. 317–332.

    Article  ADS  Google Scholar 

  2. Belousov, D., Pavlov, A., Tsurkov, D., and Lomasov, V., Irradiation effects in comet ice: A source of cometary cryovolcanism, 53th Conf. Lunar and Planet. Sci., 2022, abs. 1244.

  3. Boe, B., Jedicke, R., Meech, K.J., Wiegert, P., Weryk, R.J., Chambers, K.C., Denneau, L., Kaiser, N., Kudritzki, R.-P., Magnier, E.A., Wainscoat, R.J., and Waters, C., The orbit and size-frequency distribution of long period comets observed by Pan-STARRS1, Icarus, 2019, vol. 333, pp. 252–272.

    Article  ADS  Google Scholar 

  4. Carpenter, J.M., Thermally activated release of stored chemical energy in cryogenic media, Nature, 1987, vol. 330, pp. 358–360.

    Article  ADS  Google Scholar 

  5. Duncan, M., Quinn, T., and Tremaine, S., The formation and extent of the Solar System comet cloud, Astron. J., 1987, vol. 94, pp. 1330–1338.

    Article  ADS  Google Scholar 

  6. Fernandez, J.A., Long-period comets and the Oort cloud, Earth, Moon, and Planets, 2000, vol. 89, pp. 325–343.

    Article  ADS  Google Scholar 

  7. Fernandez, J.A., Comets: Nature, Dynamics, Origin and Their Cosmogonical Relevance, Astrophysics and Space Science Library, Burton, W., Ed., Dordrecht: Springer, 2005.

    Book  Google Scholar 

  8. Fulle, M., Lazzarin, M., La Forgia, F., Zakharov, V.V., Bertini, I., Epifani, E.M., Ammannito, E., Buzzoni, A., Capria, M.T., Carbognani, A., Da Deppo, V., Della Corte, V., Fiscale, S., Frattin, E., Inno, L., and 22 co-authors, Comets beyond 4 AU: How pristine are Oort nuclei?, Mon. Not. R. Astron. Soc., 2022, vol. 513, pp. 5377–5386.

    ADS  Google Scholar 

  9. Gronkowski, P., The search for a cometary outbursts mechanism: A comparison of various theories, Astron. Nachr., 2007, vol. 328, pp. 126–136.

    Article  ADS  Google Scholar 

  10. Gronkowski, P. and Wesolowski, M., A model of cometary outbursts: A new simple approach to the classical question, Mon. Not. R. Astron. Soc., 2015, vol. 451, pp. 3068–3077.

    Article  ADS  Google Scholar 

  11. Gronoff, G., Maggiolo, R., Cessateur, G., Moore, W.B., Airapetian, V., De Keyser, J., Dhooghe, F., Gibbons, A., Gunell, H., Mertens, C.J., Rubin, M., and Hosseini, S., The effect of cosmic rays on cometary nuclei. I. Dose deposition, Astrophys. J., 2020, vol. 890, p. 89.

    Article  ADS  Google Scholar 

  12. Heisler, J., Tremaine, S., and Alcock, C., The frequency and intensity of comet showers from the Oort cloud, Icarus, 1987, vol. 70, pp. 269–288.

    Article  ADS  Google Scholar 

  13. Hills, J.G., Comet showers and the steady-state infall of comets from the Oort cloud, Astrophys. J., 1981, vol. 86, pp. 1730–1740.

    Google Scholar 

  14. Hudson, R.L. and Moore, M.H., A far-IR study of amorphous ice: An unreported oscillation between amorphous and crystalline phases, J. Phys. Chem., 1992, vol. 96, pp. 6500–6404.

    Article  Google Scholar 

  15. Huebner, W.F., Benkhoff, J., Capria, M-T., Coradini, A., De Sanctis, C., Orosei, R., and Prialnik, D., Heat and gas diffusion in comet nuclei, ISSI Scientific Report, 2006, p. 285.

  16. Johnson, R.E. and Quickenden, T.I., Photolysis and radiolysis of water ice on outer Solar System bodies, J. Geophys. Res., 1997, vol. 102, no. E5, pp. 10985–10996.

    Article  ADS  Google Scholar 

  17. Marsden, B.G., Sekanina, Z., and Yeomans, D.K., Comets and nongravitational forces. V, Astrophys. J., 1973, vol. 78, pp. 211–225.

    Google Scholar 

  18. Meech, K.J., Kleyna, J.T., Hainaut, O., Micheli, M., Bauer, J., Denneau, L., Keane, J.V., Stephens, H., Jedicke, R., Wainscoat, R., Weryk, R., Flewelling, H., Schunova-Lilly, E., Magnier, E., and Chambers, K.C., CO-driven activity in comet C/2017 K2 (PANSTARRS), Astrophys. J., 2017, vol. 849, p. L8.

    Article  ADS  Google Scholar 

  19. Moore, M.H., Donn, B., Khanna, R., and A’Hearn, M.F., Studies of proton-irradiated cometary-type ice mixtures, Icarus, 1983, vol. 54, pp. 388–405.

    Article  ADS  Google Scholar 

  20. Pavlov, A.K., Belousov, D.V., Tsurkov, D.A., and Lomasov, V.N., Cosmic ray irradiation of comet nuclei: a possible source of cometary outbursts at large heliocentric distances, Mon. Not. R. Astron. Soc., 2022, vol. 511, pp. 5909–5914.

    Article  ADS  Google Scholar 

  21. Prialnik, D. and Sierks, H., A mechanism for comet surface collapse as observed by Rosetta on 67P/Churyumov–Gerasimenko, Mon. Not. R. Astron. Soc., 2017, vol. 469, pp. 217–S221.

    Article  ADS  Google Scholar 

  22. Reach, W.T., Vaubaillon, J., Lisse, C.M., Holloway, M., and Rho, J., Explosion of comet 17P/Holmes as revealed by the Spitzer Space Telescope, Icarus, 2010, vol. 208, pp. 276–292.

    Article  ADS  Google Scholar 

  23. Shabalin, E., Kulagin, E., Kulikov, S., and Melikhov, V., Experimental study of spontaneous release of accumulated energy in irradiated ices, J. Radiat. Phys. Chem., 2003, vol. 67, pp. 315–319.

    Article  ADS  Google Scholar 

  24. Siegel, S., Flournoy, J.M., and Baum, L.H., Irradiation yields of radicals in gamma-irradiated ice at 4.2° and 77° K, J. Chem. Phys., 1961, vol. 34, p. 1782.

    Article  ADS  Google Scholar 

  25. Stern, S.A. and Shull, J.M., The influence of supernovae and passing stars on comets in the Oort cloud, Nature, 1988, vol. 332, pp. 407–411.

    Article  ADS  Google Scholar 

  26. Vincent, J.B., Bodewits, D., Besse, S., Sierks, H., Barbieri, C., Lamy, P., Rodrigo, R., Koschny, D., Rickman, H., Keller, H.U., Agarwal, J., A’Hearn, M.F., Auger, A.T., Barucci, M.A., Bertaux, J.L., and 52 co-authors, Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse, Nature, 2015, vol. 523, pp. 63–66.

    Article  ADS  Google Scholar 

  27. Zhu, C., Bergantini, A., Singh, S.K., Abplanalp, M.J., and Kaiser, R.I., Rapid radical-radical induced explosive desorption of ice-coated interstellar nanoparticles, Astrophys. J., 2021, vol. 920, p. 73.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Belousov or A. K. Pavlov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belousov, D.V., Pavlov, A.K. Non-gravitational Mechanism of Comets’ Ejection from the Oort Cloud Due to Cometary Outbursts. Sol Syst Res 57, 629–635 (2023). https://doi.org/10.1134/S0038094623060023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623060023

Keywords:

Navigation