Skip to main content
Log in

The Geochemical Effect of Impact Processing of Polar Regolith on the Moon

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The paper considers the geochemical effects of impact processing of the polar regolith of the Moon. It contains an admixture of water ice, which can (should?) provide conditions for possible chemical reactions. To date, only one geochemical effect was reliably found—the formation of hematite Fe2O3, which is uncharacteristic for relatively low selenographic latitudes. In the work, a thermodynamic analysis of the conditions required for the formation of hematite is carried out. It is shown that this requires the presence of free oxygen, which (this is a possible option) can accumulate during the dissipation into outer space of hydrogen formed during water decomposition. The specific process or processes of hematite formation require further study. It is very likely that impact processing of polar regolith also leads to hydration of silicate glasses and to the formation of heavy hydrocarbons. The dissipation of free hydrogen into outer space, which, apparently, is formed in these processes, should lead to an increase in the deuterium content in the remaining hydrogen. The Н2О ice of the polar regolith likely contains a significant amount of heavy water. Future investigations in the polar regions of the Moon, especially with the delivery of samples to Earth, should confirm or refute these conclusions and assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Arthemis Plan. NASA’s Lunar Exploration Program Overview. September 2020.

  2. Avdellidou, C. and Vaubaillon, J., Temperatures of lunar impact flashes: Mass and size distribution of small impactors hitting the Moon, Mon. Not. R. Astron. Soc., 2019, vol. 484, pp. 5212–5222.

    Article  ADS  Google Scholar 

  3. Avdellidou, C., Munaibari, E., Larson, R., Vaubaillon, J., Delbo, M., Hayne, P., Wieczorek, M., Sheward, D., and Cook, A., Impacts on the Moon: Analysis methods and size distribution of impactors, Planet. Space Sci., 2021, vol. 200, p. 105201.

    Article  Google Scholar 

  4. Basilevsky, A.T., Kreslavsky, M.A., Dorofeeva, V.A., Li Yun, and Fang LiGang, Impact-caused regolith reworking within polar regions of the Moon, Sol. Syst. Res., 2022, vol. 56, no. 3, pp. 155–163. https://doi.org/10.1134/S0038094622030017

    Article  ADS  Google Scholar 

  5. Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., et al., Detection of water in the LCROSS ejecta plume, Science, 2010, vol. 330, pp. 463–468.

    Article  ADS  Google Scholar 

  6. Djachkova, M.V., Mitrofanov, I.G., Sanin, A.B., Litvak, M.L., and Tret’yakov, V.I., Characterization of the Luna-25 landing sites, Sol. Syst. Res., 2021, vol. 55, no. 6, pp. 509–528. https://doi.org/10.1134/S0038094621060034

    Article  ADS  Google Scholar 

  7. Demidova, S.I., Nazarov, M.A., Lorenz, C.A., Kurat, G., Brandstätter, F., and Ntaflos, Th., Chemical composition of lunar meteorites and the lunar crust, Petrology, 2007, vol. 15, no. 4, pp. 416–437.

    Article  Google Scholar 

  8. Dong, C., Green, J.L., Wang, L., Draper, D.S., Lingam, M., Liu, N., and Boardsen, S.A., Moon’s polar ice and hematite: A consequence of ancient lunar dynamo, 52nd Lunar and Planet. Sci. Conf., 2021, p. 1790.

  9. Efanov, V.V. and Dolgopolov, V.P., The Moon: From research to exploration (To the 50th anniversary of Luna-9 and Luna-10 spacecraft), Sol. Syst. Res., 2017, vol. 51, no. 7, pp. 573–578.

    Article  ADS  Google Scholar 

  10. Gerasimov, M.V., Dikov, Yu.P., Yakovlev, O.I., and Wlotzka, F., Experimental investigation of the role of water in impact vaporization chemistry, Deep-Sea Res., 2002, vol. 49, pp. 995–1009.

    ADS  Google Scholar 

  11. Glushko, V.P., Gurvich, L.V., Veits, I.V., Medvedev, V.A., Khachkuruzov, G.A., Iorish V.S., Aristova, N.M., Bergman, G.A., Gorokhov, L.N., Gusarov, A.V., et al., Spravochnik “Termodinamicheskie svoistva individual’nykh veshchestv” v 6 tomakh (Thermodynamic Properties of Individual Substances. Reference Book in 6 Volumes), Moscow: Nauka, 1978–2004.

  12. Green, R.O., Pieters, C., Mouroulis, P., Eastwood, M., Boardman, J., et al., The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation, J. Geophys. Res., 2011, vol. 116, p. E00G19.

    Article  Google Scholar 

  13. Head, J., Pieters, C., Scott, D., Ivanov, M., Krasilnikov, S., et al., Geologic context for lunar south circumpolar region exploration: Implications for goals, site selection and operations strategy, Twelfth Moscow Solar System Symp., 2021, p. 12MS3-MN-03.

  14. Ivanov, M.A., Hiesinger, H., Abdrakhimov, A.M., Basilevsky, A.T., Head, J.W., Pasckert, J-H., Bauch, K., van der Bogert, C.H., Glaser, P., and Kohanov, A., Landing site selection for Luna-Glob mission in crater Boguslawsky, Planet. Space Sci., 2015, vol. 117, pp. 45–63.

    Article  ADS  Google Scholar 

  15. Ivanov, M.A., Abdrakhimov, A.M., Basilevsky, A.T., Demidov, N.E., Guseva, E.N., Head, J.W., Hiesinger, H., Kohanov, A.A., and Krasilnikov, S.S., Geological characterization of the three high-priority landing sites for the Luna-Glob mission, Planet. Space Sci., 2018, vol. 162, pp. 190–206.

    Article  ADS  Google Scholar 

  16. Le Feuvre, M. and Wieczorek, M.A., Nonuniform cratering of the terrestrial planets, Icarus, 2008, vol. 197, pp. 291–306.

    Article  ADS  Google Scholar 

  17. Li, S., Lucey, P.G., Fraeman, A.A., Poppe, A.R., Sun, V.Z., Hurley, D.M., and Schultz, P.H., Widespread hematite at high latitudes on the Moon, Sci. Adv., 2020, vol. 6, no. 36. doi 10.11.26/sciadv.aba1940

  18. Litvak, M.L., Mitrofanov, I.G., Sanin, A., Malakhov, A., Boynton, W.V., et al., Global maps of lunar neutron fluxes from the LEND instrument, J. Geophys. Res., 2012, vol. 117, no. 22, p. E00H22.

    Article  Google Scholar 

  19. Lodders, K. and Fegley, B., Jr., The Planetary Scientist’s Companion, Oxford: Oxford Univ. Press, 1998.

    Google Scholar 

  20. McKay, D.S., Heiken, G., Basu, A., Blanford, G., Simon, S., Reedy, R., French, B.M., and Papike, J., The lunar regolith, Lunar Source Book, Cambridge: Cambridge Univ. Press, 1991.

    Google Scholar 

  21. Melosh, H.J., Planetary Surface Processes, Cambridge: Cambridge Univ. Press, 2011.

    Book  Google Scholar 

  22. Mitrofanov, I.G. and Zelenyi, L.M., On the exploration of the Moon. Plans and nearest prospects, Zemlya Vselennaya, 2019, no. 4, pp. 16–37.

  23. Mitrofanov, I.G., Zelenyi, L.M., and Kalashnikov, D.V., Luna-25: The first polar mission to the Moon, Sol. Syst. Res., 2021, vol. 55, no. 6, pp. 485–495.

    Article  ADS  Google Scholar 

  24. Stopar, J.D., Jolliff, B.L., Speyerer, E.J., Asphaug, E.I., and Robinson, M.S., Potential impact-induced water–solid reactions on the Moon, Planet. Space Sci., 2018, vol. 162, pp. 157–169.

    Article  ADS  Google Scholar 

  25. Werner, S.C. and Ivanov, B.A., Exogenic dynamics, cratering, and surface ages, Treatise on Geophysics, 2015, pp. 327–365, 2nd ed.

    Book  Google Scholar 

  26. Xu Lin, Pei Zhaoyu, Zou Yongliao, and Wang Chi, China’s lunar and deep space exploration program for the next decade (2020–2030), Chinese J. Space Sci., 2020, vol. 40, no. 5, pp. 615–617.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to B.A. Ivanov, O.I. Yakovlev, M.V. Gerasimov, and Carle Pieters for their assistance in the work.

Funding

The work was supported by the Russian Science Foundation, project no. 21-17-00035 (A.T. Basilevsky), and Jiangsu Education Department (China), project no. 20KJD160001 (Yuan Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Basilevsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basilevsky, A.T., Dorofeeva, V.A., Yuan, L. et al. The Geochemical Effect of Impact Processing of Polar Regolith on the Moon. Sol Syst Res 57, 45–51 (2023). https://doi.org/10.1134/S003809462206003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003809462206003X

Keywords:

Navigation