Skip to main content
Log in

The Role of Radial Transport in Forming Minor Bodies of the Outer Solar System

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

In this paper, we summarize the experimental data on the features of the mineral, chemical, and isotopic compositions of minor bodies of the Solar System—asteroids, Saturn’s satellites, and nuclei of comets of different dynamic types—which suggest that the formation of these bodies was significantly influenced by the mixing of different-genesis matter: presolar and nebular. The latter was formed in the circumsolar gas–dust protoplanetary accretion disk that is also called the nebula. The matter of presolar origin includes amorphous iron–magnesium silicates, refractory organic compounds, volatile organic compounds, amorphous water ice, as well as ices of СО2, NH3, CH3OH, CO, etc. The species of nebular origin are aluminum-, calcium-, and titanium-rich refractory inclusions (known as CAls), microcrystalline magnesium silicates, as well as crystalline water ice, the hydrogen isotopic composition of which is several times lower than that of water ice of the protosolar nebula. The presolar- and nebular-origin matter could be mixed because, in the circumsolar disk at the early stages of its evolution, in addition to the main accretion flux of the gas–dust matter passing through the disk toward the Sun, there was a flux moving in the opposite direction, from the Sun, from the inner hot regions of the circumsolar disk outward to its external regions. There, the nebular matter was mixed with the protosolar matter, which had been precipitating onto the disk from its accretion envelope, mainly onto its edge, during the first million years of its evolution. The currently available package of the experimental data allows us to suppose that it is exactly the mixing of the matter from two regions of the circumsolar disk, within which the P–T conditions significantly differed, that may explain the presence of chemically and isotopically heterogeneous ice–rock bodies in the outer Solar System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A’Hearn, M.F., Belton, M.J.S., Delamere, W.A., Feaga, L.M., Hampton, D., Kissel, J., Klaase, K.P., McFadden, L.A., Meech, K.J., Melosh, H.J., Schultz, P.H., Sunshine, J.M., Thomas, P.C., Veverka, J., Wellnitz, D.D., Yeomans, D.K., Besse, S., Bodewits, D., Bowling, T.J., Carcich, B.T., Collins, S.M., Farnham, T.L., Groussin, O., Hermalyn, B., Kelley, M.S., Li, J.-Y., Lindler, D.J., Lisse, C.M., McLaughlin, S.A., Merlin, F., Protopapa, S., Richardson, J.E., and Williams, J.L., EPOXI at comet Hartley 2, Science, 2011, vol. 332, pp. 1396–1400.

    Article  ADS  Google Scholar 

  2. Altwegg, K., Balsiger, H., Bar-Nun, A., Bieler, A., Bochsler, P., Briois, C., Calmonte, U., Combi, M., de Keyser, J., Eberhardt, P., Fiethe, B., Fuselier, S., Gasc, S., Gombosi, T.I., Hansen, K.C., Hässig, M., Jäckel, A., Kopp, E., Korth, A., LeRoy, L., Mall, U., Marty, B., Mousis, O., Neefs, E., Owen, T., Rème, H., Rubin, M., Sémon, T., Tzou, C.-Y., Waite, H., and Wurz, P., 67P/Churyumov–Gerasimenko, a Jupiter family comet with a high D/H ratio, Science, 2015, vol. 347, no. 6220, id. 1261952.

  3. Audard, M., Ábrahám, P., Dunham, M.M., Green, J.D., Grosso, N., Hamaguchi, K., Kastner, J.H., Kóspál, A., Lodato, G., Romanova, M.M., Skinner, S.L., Vorobyov, E.I., and Zhu, Z., Episodic accretion in young stars, in Protostars and Planets VI, Beuther, H., Klessen, R.S., Dullemond, C.P., and Henning, T., Eds., Tuscon: Univ. Arizona Press, 2014, pp. 387–410.

  4. Basilevsky, A.T., Krasilnikov, S.S., Mall, U., Hviidd, S.F.S., Skorov, Yu.V., and Keller, H.U., Pinnacles on the 67P comet nucleus: Evidence for large scale erosion and hierarchical agglomeration of the nucleus, Planet. Space Sci., 2017, vol. 140, pp. 80–85.

    Article  ADS  Google Scholar 

  5. Bell, K.R., Cassen, P.M., Klahr, H.H., and Henning, Th., The structure and appearance of protostellar accretion disks: Limits on disk flaring, Astrophys. J., 1997, vol. 486, no. 1, pp. 372–387.

    Article  ADS  Google Scholar 

  6. Biver, N., Moreno, R., Bockelée-Morvan, D., Sandqvist, Aa., Colom, P., Crovisier, J., Lis, D.C., Boissier, J., Debout, V., Paubert, G., Milam, S., Hjalmarson, A., Lundin, S., Karlsson, T., Battelino, M., Frisk, U., Murtagh, D., and the Odin team, Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy), Astron. Astrophys., 2016, vol. 589, id. A78.

  7. Bockelée-Morvan, D., Gautier, D., Hersant, F., Hurè, J.M., and Robert, F., Turbulent radial mixing in the solar nebula as the source of crystalline silicates in comets, Astron. Astrophys., 2002, vol. 384, pp. 1107–1118.

    Article  ADS  Google Scholar 

  8. Bockelée-Morvan, D., Calmonte, U., Charnley, S., Duprat, J., Engrand, C., Gicque, A., Hässig, M., Jehin, E., Kawakita, H., Marty, B., Milam, S., Morse, A., Rousselot, P., Sheridan, S., and Wirström, E., Cometary isotopic measurements, Space Sci. Rev., 2015, vol. 197, pp. 47–83.

    Article  ADS  Google Scholar 

  9. Bodewits, D., Noonan, J.W., Feldman, P.D., Bannister, M.T., Farnocchia, D., Harris, W.M., Li, J.-Y., Mandt, K.E., Parker, J.Wm., and Xing, Z.-X., The carbon monoxide-rich interstellar comet 2I/Borisov, Nat. Astron., 2020, vol. 4, pp. 867–871.

    Article  ADS  Google Scholar 

  10. Boley, A.C., Mejía, A.C., Durisen, R.H., Cai, K., Pickett, M.K., and D’Alessio, P., The thermal regulation of gravitational instabilities in protoplanetary disks. III. Simulations with radiative cooling and realistic opacities, Astrophys. J., 2006, vol. 651, no. 1, pp. 517–534.

    Article  ADS  Google Scholar 

  11. Bouwman, J., de Koter, A., Dominik, C., and Waters, L.B.F.M., The origin of crystalline silicates in the Herbig Be star HD 100546 and in comet Hale-Bopp, Astron. Astrophys., 2003, vol. 401, pp. 577–592.

    Article  ADS  Google Scholar 

  12. Brasser, R. and Morbidelli, A., Oort cloud and scattered disc formation during a late dynamical instability in the Solar System, Icarus, 2013, vol. 225, pp. 40–49.

    Article  ADS  Google Scholar 

  13. Brownlee, D.E., Horz, F., Newburn, R.L., Duxbury, T.C., Sandford, S., Sekanina, Z., Tsou, P., Hanner, M.S., Clark, B.C., Green, S.F., and Kissel, J., Surface of young Jupiter family comet 81 P/Wild 2: view from the Stardust spacecraft, Science, 2004, vol. 304, no. 5678, pp. 1764–1769.

    Article  ADS  Google Scholar 

  14. Brownlee, D., Tsou, P., Aleon, J., Alexander, C.M.O’D., Araki, T., Bajt, S., Baratta, G.A., Bastien, R., Bland, P., Bleuet, P., Borg, J., Bradley, J.P., Brearley, A., Brenker, F., Brennan, S., Bridges, J.C., Browning, N.D., Brucato, J.R., Bullock, E., Burchell, M.J., Busemann, H., Butterworth, A., Chaussidon, M., Cheuvront, A., Chi, M., Cintala, M.J., Clark, B.C., Clemett, S.J., Cody, G., Colangeli, L., Cooper, G., Cordier, P., Daghlian, C., Dai, Z., D’Hendecourt, L., Djouadi, Z., Dominguez, G., Duxbury, T., Dworkin, J.P., Ebel, D.S., Economou, T.E., Fakra, S., Fairey, S.A.J., Fallon, S., Ferrini, G., Ferroir, T., Fleckenstein, H., Floss, C., Flynn, G., Franchi, I.A., Fries, M., Gainsforth, Z., Gallien, J.-P., Genge, M., Gilles, M.K., Gillet, P., Gilmour, J., Glavin, D.P., Gounelle, M., Grady, M.M., Graham, G.A., Grant, P.G., Green, S.F., Grossemy, F., Grossman, L., Grossman, J.N., Guan, Y., Hagiya, K., Harvey, R., Heck, P., Herzog, G.F., Hoppe, P., Horz, F., Huth, J., Hutcheon, I.D., Ignatyev, K., Ishii, H., Ito, M., Jacob, D., Jacobsen, C., Jacobsen, S., Jones, S., Joswiak, D., Jurewicz, A., Kearsley, A.T., Keller, L.P., Khodja, H., Kilcoyne, A.L.D., Kissel, J., Krot, A., Langenhorst, F., Lanzirotti, A., Le, L., Leshin, L.A., Leitner, J., Lemelle, L., Leroux, H., Liu, M.-C., Luening, K., Lyon, I., MacPherson, G., Marcus, M.A., Marhas, K., Marty, B., Matrajt, G., McKeegan, K., Meibom, A., Mennella, V., Messenger, K., Messenger, S., Mikouchi, T., Mostefaoui, S., Nakamura, T., Nakano, T., Newville, M., Nittler, L.R., Ohnishi, I., Ohsumi, K., Okudaira, K., Papanastassiou, D.A., Palma, R., Palumbo, M.E., Pepin, R.O., Perkins, D., Perronnet, M., Pianetta, P., Rao, W., Rietmeijer, F J.M., Robert, F., Rost D., Rotundi A., Ryan, R., Sandford, S.A., Schwandt, C.S., See, T.H., Schlutter, D., Sheffield-Parker, J., Simionovici, A., Simon, S., Sitnitsky, I., Snead, C.J., Spencer, M.K., Stadermann, F.J., Steele, A., Stephan, T., Stroud, R., Susini, J., Sutton, S.R., Suzuki, Y., Taheri, M., Taylor, S., Teslich, N., Tomeoka, K., Tomioka, N., Toppani, A., Trigo-Rodrıguez, J.M., Troadec, D., Tsuchiyama, A., Tuzzolino, A. J., Tyliszczak, T., Uesugi, K., Velbel, M., Vellenga, J., Vicenzi, E., Vincze, L., Warren, J., Weber, I., Weisberg, M., Westphal, A.J., Wirick, S., Wooden, D., Wopenka, B., Wozniakiewicz, P., Wright, I., Yabuta, H., Yano, H., Young, E.D., Zare, R.N., Zega, T., Ziegler, K., Zimmerman, L., Zinner, E., and Zolensky, M., Comet 81P/Wild 2 under a microscope, Science, 2006, vol. 314, pp. 1711–1716.

    Article  ADS  Google Scholar 

  15. Brownlee, D., Joswiak, D., and Matrajt, G., Overview of the rocky component of Wild 2 comet samples: Insight into the early Solar System, relationship with meteoritic materials and the differences between comets and asteroids, Meteorit. Planet. Sci., 2012, vol. 47, no. 4, pp. 453–470.

    Article  ADS  Google Scholar 

  16. Brucato, J.R., Colangeli, L., Mennela, V., Palumbo, P., and Bussoletti, E., Silicates in Hale–Bopp: hints from laboratory studies, Planet. Space Sci., 1999, vol. 47, nos. 6–7, pp. 773–779.

    Article  ADS  Google Scholar 

  17. Cameron, A.G.W., Formation of the solar nebula, Icarus, 1963, vol. 1, pp. 13–69.

    Article  ADS  Google Scholar 

  18. Ceccarelli, C., Caselli, P., Bockelée-Morvan, D., Mousis, O., Pizzarello, S., Robert, F., and Semenov, D., Deuterium fractionation: The Ariadne’s Thread from the precollapse phase to meteorites and comets today, in Protostars and Planets VI, Beuther, H., Klessen, R.S., Dullemond, C.P., and Henning, T., Eds., Tuscon: Univ. Arizona Press, 2014, pp. 859–882.

  19. Cha, S.-H. and Nayakshin, S., A numerical simulation of a ‘super-Earth’ core delivery from ~100 to ~8 AU, Mon. Not. R. Astron. Soc., 2011, vol. 415, no. 4, pp. 3319–3334.

    Article  ADS  Google Scholar 

  20. Clark, R.N., Brown, R.H., Cruikshank, D.P., and Swayze, G.A., Isotopic ratios of Saturn’s rings and satellites: Implications for the origin of water and Phoebe, Icarus, 2019, vol. 321, pp. 791–802.

    Article  ADS  Google Scholar 

  21. Connelly, J.N., Bizzarro, M., Krot, A.N., Nordlund, A., Wielandt, D., and Ivanova, M.A., The absolute chronology and thermal processing of solids in the solar protoplanetary disk, Science, 2012, vol. 338, pp. 651–655.

    Article  ADS  Google Scholar 

  22. Cordiner, M.A., Milam, S.N., Biver, N., Bockelée-Morvan, D., Roth, N.X., Bergin, E.A., Jehin, E., Remijan, A.J., Charnley, S.B., Mumma, M.J., Boissier, J., Crovisier, J., Paganini, L., Kuan, Y.-J., and Lis, D.C., Unusually high CO abundance of the first active interstellar comet, Nat. Astron., 2020, vol. 4, pp. 861–866.

    Article  ADS  Google Scholar 

  23. Crovisier, J., Leech, K., Bockelée-Morvan, D., Brooke, T.Y., Hanner, M.S., Altieri, B., Keller, H.U., and Lellouch, E., The spectrum of comet Hale–Bopp (C/1995 O1) observed with the infrared space observatory at 2.9 astronomical units from the Sun, Science, 1997, vol. 275, no. 5308, pp. 1904–1907.

    Article  ADS  Google Scholar 

  24. Crovisier, J., Brooke, T.Y., Leech, K., Bockelée-Morvan, D., Lellouch, E., Hanner, M.S., Altieri, B., Keller, H.U., Lim, T., Encrenaz, S., Griffin, M., de Graauw, T., van Dishoeck, E., and Knacke, R.F., The thermal infrared spectra of comets Hale–Bopp and 103P/Hartley 2 observed with the infrared space observatory in thermal emission spectroscopy and analysis of dust, disks, and regoliths, ASPCS, 2000, vol. 196, pp. 109–117.

    ADS  Google Scholar 

  25. Davidsson, B.J.R., Sierks, H., Güttler, C., Marzari, F., Pajola, M., Rickman, H., A’Hearn M.F., Auger, A.-T., El-Maarry, M.R., Fornasier, S., Gutiérrez, P.J., Keller, H.U., Massironi, M., Snodgrass, C., Vincent, J.-B., Barbieri, C., Lamy, P.L., Rodrigo, R., Koschny, D., Barucci, M.A., Bertaux, J.-L., Bertini, I., Cremonese, G., Da Deppo, V., Debei, S., De Cecco, M., Feller, C., Fulle, M., Groussin, O., Hviid, S.F., Höfner, S., Ip, W.-H., Jorda, L., Knollenberg, J., Kovacs, G., Kramm, J.-R., Kührt, E., Küppers, M., La Forgia, F., Lara, L.M., Lazzarin, M., Lopez-Moreno, J.J., Moissl-Fraund, R., Mottola, S., Naletto, G., Oklay, N., Thomas, N., and Tubiana, C., The primordial nucleus of comet 67P/Churyumov–Gerasimenko, Astron. Astrophys., 2016, vol. 592, id. A63.

  26. Defouilloy, C., Nakashima, D., Joswiak, D.J., Brownlee, D.E., Tenner, T.J., and Kita, N.T., Origin of crystalline silicates from comet 81P/Wild 2: combined study on their oxygen isotopes and mineral chemistry, Earth Planet. Sci. Lett., 2017, vol. 465, pp. 145–154.

    Article  ADS  Google Scholar 

  27. Dello Russo, N., Kawakita, H., Vervack, R.J., Jr., and Weaver, H.A., Emerging trends and a comet taxonomy based on the volatile chemistry measured in thirty comets with high-resolution infrared spectroscopy between 1997 and 2013, Icarus, 2016, vol. 278, pp. 301–332.

    Article  ADS  Google Scholar 

  28. Dorofeeva, V.A., Genesis of volatile components at Saturn’s regular satellites. Origin of Titan’s atmosphere, Geochem. Int., 2016, vol. 54, no. 1, pp. 7–26.

    Article  Google Scholar 

  29. Dorofeeva, V.A., Chemical and isotope composition of comet 67P/Churyumov–Gerasimenko: The Rosetta-Philae mission results reviewed in the context of cosmogony and cosmochemistry, Sol. Syst. Res., 2020, vol. 54, no. 2, pp. 96–120.

    Article  ADS  Google Scholar 

  30. Dorofeeva, V.A. and Makalkin, A.B., Evolyutsiya rannei solnechnoi sistemy. Kosmokhimicheskie i fizicheskie aspekty (Evolution of the Early Solar System. Cosmochemical and Physical Aspects), Moscow: Editorial URSS, 2004.

  31. Emel’yanenko, V.V., Dynamics and origin of comets: new problems appeared after the Rosetta space mission, Sol. Syst. Res., 2018, vol. 52, no. 5, pp. 382–391.

    Article  ADS  Google Scholar 

  32. Emel’yanenko, V.V., Asher, D.J., and Bailey, M.E., The fundamental role of the Oort cloud in determining the flux of comets through the planetary system, Mon. Not. R. Astron. Soc., 2007, vol. 381, pp. 779–789.

    Article  ADS  Google Scholar 

  33. Emel’yanenko, V.V., Asher, D.J., and Bailey, M.E., A model for the common origin of Jupiter family and Halley type comets, Earth, Moon Planets, 2013, vol. 110, pp. 105–130.

    Article  ADS  Google Scholar 

  34. Fegley, B., Jr. and Lewis, J.S., Volatile element chemistry in the solar nebula: Na, K, F, Cl, Br, and P, Icarus, 1980, vol. 41, no. 3, pp. 439–455.

    Article  ADS  Google Scholar 

  35. Gail, H.-P., Radial mixing in protoplanetary accretion disks. I. Stationary disc models with annealing and carbon combustion, Astron. Astrophys., 2001, vol. 378, pp. 192–213.

    Article  ADS  Google Scholar 

  36. Gail, H.-P., Radial mixing in protoplanetary accretion disks. IV. Metamorphosis of the silicate dust complex, Astron. Astrophys., 2004, vol. 413, pp. 571–591.

    Article  ADS  Google Scholar 

  37. Gasc, S., Altwegg, K., Balsiger, H., Berthelier, J.-J., Bieler, A., Calmonte, U., Fiethe, B., Fuselier, S., Galli, A., Gombosi, T., Hoang, M., De Keyser, J., Korth, A., Le Roy, L., Mall, U., Rème, H., Rubin M., Sémon, T., Tzou, C.-Y., and Waite, J.H., Change of outgassing pattern of 67P/Churyumov–Gerasimenko during the March 2016 equinox as seen by ROSINA, Mon. Not. R. Astron. Soc., 2017, vol. 469, pp. 108–S117.

    Article  Google Scholar 

  38. Geiss, J. and Gloeckler, G., Abundances of deuterium and Helium-3 in the protosolar cloud, Space Sci. Rev., 1998, vol. 84, pp. 239–250.

    Article  ADS  Google Scholar 

  39. Geiss, J. and Gloecker, G., Isotopic composition of H, He and Ne in the protosolar cloud, Space Sci. Rev., 2003, vol. 106, no. 1, pp. 3–18.

    Article  ADS  Google Scholar 

  40. Grossman, L., Condensation in the primitive solar nebula, Geochim. Cosmochim. Acta, 1972, vol. 36, no. 5, pp. 597–619.

    Article  ADS  Google Scholar 

  41. Hanner, M.S., Lynch, D.K., and Russel, R.W., The 8–13 micron spectra of comets and the composition of silicate grains, Astrophys. J., 1994, vol. 425, pp. 274–285.

    Article  ADS  Google Scholar 

  42. Harker, D.E. and Desch, S.J., Annealing of silicate dust by nebular shocks at 10 AU, Astrophys. J., 2002, vol. 565, no. 2, pp. L109–L112.

    Article  ADS  Google Scholar 

  43. Harker, D.E., Woodward, C.E., Sitko, M.L., Wooden, D.H., Russell, R.W., and Lynch, D.K., Mid-IR Gemini-N observations of fragments B and C of comet 73P/Schwassmann–Wachmann 3, 2006 Am. Astron. Soc. DPS meeting #38, id. 12.04, Bull. Am. Astron. Soc., 2006, vol. 38, p. 503.

    ADS  Google Scholar 

  44. Hartogh, P., Lis, D.C., Bockelée-Morvan, D., de Val-Borro, M., Biver, N., Kuppers, M., Emprechtinger, M., Bergin, E.A., Crovisier, J., Rengel, M., Moreno, R., Szutowicz, S., and Blake, G.A., Ocean-like water in the Jupiter-family comet 103P/Hartley 2, Nature, 2011, vol. 478, no. 7368, pp. 218–220.

    Article  ADS  Google Scholar 

  45. Hughes, A.L. and Armitage, P.J., Particle transport in evolving protoplanetary disks: implications for results from STARDUST, Astrophys. J., 2010, vol. 719, pp. 1633–1653.

    Article  ADS  Google Scholar 

  46. Joswiak, D.J., Nakashima, D., Brownlee, D.E., Matrajt, G., Ushikubo, T., Kita, N.T., Messenger, S., and Ito, M., Terminal particle from Stardust track 130: Probable Al-rich chondrule fragment from comet Wild 2, Geochim. Cosmochim. Acta, 2014, vol. 144, pp. 277–298.

    Article  ADS  Google Scholar 

  47. Kemper, F., Vriend, W.J., and Tielens, A.G.G.M., The absence of crystalline silicates in the diffuse interstellar medium, Astrophys. J., 2004, vol. 609, no. 2, pp. 826–837.

    Article  ADS  Google Scholar 

  48. Kemper, F., Vriend, W.J., and Tielens, A.G.G.M., Erratum: The absence of crystalline silicates in the diffuse interstellar medium, Astrophys. J., 2005, vol. 633, no. 1, pp. 534–534.

    Article  ADS  Google Scholar 

  49. Kochergin, A., Zubko, E., Husarik, M., Ivanova, O.V., Videen, G., Chornaya, E., Kim, S.S., Zheltobryukhov, M., and Luk’yanyk, I., Velocity of dust ejected from interstellar comet 2I/Borisov, Res. Notes Am. Astron. Soc., 2019, vol. 3, no. 10, id. 152.

  50. Kuskov, O.L., Dorofeeva, V.A., Kronrod, V.A., and Makalkin, A.B., Sistemy Yupitera i Saturna: formirovanie, sostav i vnutrennee stroenie krupnykh sputnikov (Jupiter and Saturn Systems: Formation, Composition and Internal Structure of Large Satellites), Moscow: LKI, 2009.

  51. Larimer, J.W., Chemical fractionations in meteorites. I. Condensation of the elements, Geochim. Cosmochim. Acta, 1967, vol. 31, no. 8, pp. 1215–1238.

    Article  ADS  Google Scholar 

  52. Larimer, J.W. and Anders, E., Chemical fractionations in meteorites. II. Abundance patterns and their interpretation, Geochim. Cosmochim. Acta, 1967, vol. 31, no. 8, pp. 1239–1270.

    Article  ADS  Google Scholar 

  53. Larimer, J.W. and Anders, E., Chemical fractionations in meteorites. III. Major element fractionations in chondrites, Geochim. Cosmochim. Acta, 1970, vol. 34, no. 3, pp. 367–387.

    Article  ADS  Google Scholar 

  54. Larsen, K.K., Wielandt, D., Schiller, M., Krot, A.N., and Bizzarro, M., Episodic formation of refractory inclusions in the Solar System and their presolar heritage, Earth Planet. Sci. Lett., 2020, vol. 535, id. 116088.

  55. Lécluse, C. and Robert, F., Hydrogen isotope exchange reaction rates: Origin of water in the inner solar system, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 13, pp. 2927–2939.

    Article  ADS  Google Scholar 

  56. Lee, J.-E. and Bergin, E.A., The D/H ratio of water ice at low temperatures, Astrophys. J., 2015, vol. 799, pp. 104–113.

    Article  ADS  Google Scholar 

  57. Lellouch, E., Bezard, B., Fouchet, T., Feuchtgruber, H., Encrenaz, T., and de Graauw, T., The deuterium abundance in Jupiter and Saturn from ISO-SWS observations, Astron. Astrophys., 2001, vol. 370, pp. 610–622.

    Article  ADS  Google Scholar 

  58. Le Roy, L., Altwegg, K., Balsiger, H., Berthelier, J.-J., Bieler, A., Briois, C., Calmonte, U., Combi, M.R., De Keyser, J., Dhooghe, F., Fiethe, B., Fuselier, S.A., Gasc, S., Gombosi, T.I., Hassig, M., Jackel, A., Rubin, M., and Tzou, C.-Y., Inventory of the volatiles on comet 67P/Churyumov–Gerasimenko from Rosetta/ROSINA, Astron. Astrophys., 2015, vol. 583, id. A1.

  59. Lewis, J.S., Low temperature condensation from the solar nebula, Icarus, 1972, vol. 16, no. 2, pp. 241–252.

    Article  ADS  Google Scholar 

  60. Li, A. and Draine, B.T., Do the infrared emission features need UV excitation? The PAH model in UV-poor reflection nebulae, Astrophys. J., 2001, vol. 554, no. 2, pp. 778–802.

    Article  ADS  Google Scholar 

  61. Li, M., Huang, S., Petaev, M.I., Zhu, Z., and Steven, J.H., Dust condensation in evolving discs and the composition of planetary building blocks, Mon. Not. R. Astron. Soc., 2020, vol. 495, no. 3, pp. 2543–2553.

    Article  ADS  Google Scholar 

  62. Lodders, K., Solar system abundances and condensation temperatures of the elements, Astrophys. J., 2003, vol. 591, pp. 1220–1247.

    Article  ADS  Google Scholar 

  63. Machida, M.N., Inutsuka, S.-I., and Matsumoto, T., Effect of magnetic braking on circumstellar disk formation in a strongly magnetized cloud, Publ. Astron. Soc. Jap., 2011, vol. 63, no. 3, pp. 555–573.

    Article  ADS  Google Scholar 

  64. Makalkin, A.B. and Dorofeeva, V.A., Accretion disks around Jupiter and Saturn at the stage of regular satellite formation, Sol. Syst. Res., 2014, vol. 48, no. 1. pp. 62–78.

    Article  ADS  Google Scholar 

  65. Matzel, J.E.P., Ishii, H.A., Joswiak, D., Hutcheon, I.D., Bradley, J.P., Brownlee, D., Weber, P.K., Teslich, N., Matrajt, G., McKeegan, K.D., and MacPherson, G.J., Constraints on the formation age of cometary material from the NASA Stardust mission, Science, 2010, vol. 328, pp. 483–486.

    Article  ADS  Google Scholar 

  66. Meech, K.J., Setting the scene: what did we know before Rosetta?, Philos. Trans. R. Soc., London, Ser. A, 2017, vol. 375, no. 2097, id. 20160247.

  67. Nicholson, P.D., Hedman, M.M., Clark, R.N., Showalter, M.R., Cruikshankd, D.P., Cuzzi, J.N., Filacchione, G., Capaccione, F., Cerronie, P., Hansen, G.B., Sicardy, B., Drossart, P., Brown, R.H., Buratti, B.J., Baines, K.H., and Coradini, A., A close look at Saturn’s rings with Cassini VIMS, Icarus, 2008, vol. 193, pp. 182–212.

    Article  ADS  Google Scholar 

  68. Nixon, C.A., Temelso, B., Vinatier, S., Teanby, N.A., Bezard, B., Achterberg, R.K., Mandt, K.E., Sherrill, C.D., Irwin, P.G.J., Jennings, D.E., Romani, P.N., Coustenis, A., and Flasar, F.M., Isotopic ratios in Titan’s methane: measurements and modeling, Astrophys. J., 2012, vol. 749, no. 2, id. 159.

  69. Nuth, J.A. and Johnson, N.M., Crystalline silicates in comets: How did they form?, Icarus, 2006, vol. 180, no. 1, pp. 243–250.

    Article  ADS  Google Scholar 

  70. Olofsson, J., Augereau, J.-C., van Dishoeck, E.F., Merín, B., Lahuis, F., Kessler-Silacci, J., Dullemond, C.P., Oliveira, I., Blake, G.A., Boogert, A.C.A., Brown, J.M., Evans, N.J.II., Geers, V., Knez, C., Monin, J.-L., and Pontoppidan, K., C2D Spitzer-IRS spectra of disks around T Tauri stars. IV. Crystalline silicates, Astron. Astrophys., 2009, vol. 507, no. 1, pp. 327–345.

    Article  ADS  Google Scholar 

  71. Ootsubo, T., Sugita, S., Kadono, T., Honda, M., Sakon, I., Kawakita, H., Watanabe, J.-I., and Subaru/Comics team, Mid-infrared observation of the dust plume from comet 9P/Tempel 1 generated by the deep impact collision using Subaru/Comics, in Workshop on Dust in Planetary Systems (ESA SP-643), September 26–30, 2005, Kauai, Hawaii, Krueger, H. and Graps, A., Eds., 2007, pp. 45–49.

  72. Palme, H., Larimer, J.W., and Lipschutz, M.E., Moderate volatile elements, in Meteorites and the Early Solar System, Kerridge, J.F. and Matthews, M.S, Eds., Tucson: Univ. Arizona Press, 1988, pp. 436–461.

    Google Scholar 

  73. Paquette, J.A., Engrand, C., Stenzel, O., Hilchenbach, M., and Kissel, J., Searching for calcium-aluminum-rich inclusions in cometary particles with Rosetta/COSIMA, Meteorit. Planet. Sci., 2016, vol. 51, no. 7, pp. 1340–1352.

    Article  ADS  Google Scholar 

  74. Petaev, M.I. and Wood, J.A., The CWPI (Condensation with Partial Isolation) model: Formation of carbonaceous and enstatite chondrites from the same system, Meteorit. Planet. Sci., 1997, vol. 32, id. A105.

  75. Petaev, M.I. and Wood, J.A., The condensation with partial isolation model of condensation in the solar nebula, Meteorit. Planet. Sci., 1998, vol. 33, no. 5, pp. 1123–1137.

    Article  ADS  Google Scholar 

  76. Pierel, J.D.R., Nixon, C.A., Lellouch, E., Fletcher, L.N., Bjoraker, G.L., Achterberg, R.K., Bezard, B., Hesman, B.E., Irwin, P.G.J., and Flasar, F.M., D/H ratios on Saturn and Jupiter from Cassini CIRS, Astrophys. J., 2017, vol. 154, no. 5, id. 178.

  77. Robbins, S.J., Stewart, G.R., Lewis, M.C., Joshua, E., Colwell, J.E., and Sremcevic, M., Estimating the masses of Saturn’s A and B rings from high-optical depth N-body simulations and stellar occultations, Icarus, 2010, vol. 206, no. 2, pp. 431–445.

    Article  ADS  Google Scholar 

  78. Robert, F., Solar System deuterium/hydrogen ratio, in Meteorites and the Early Solar System II, Lauretta, D.S. and McSween, H.Y., Jr., Eds., Tucson: Univ. Arizona Press, 2006, pp. 341–351.

    Google Scholar 

  79. Rusol, A.V. and Dorofeeva, V.A., Dynamic model of the thermal evolution of rock-ice bodies: a probable source of the substance of Saturn’s ice rings, 13-ya Mezhdunarodnaya konferentsiya “Fiziko-khimicheskie i petrograficheskie issledovaniya v naukakh o Zemle” (13th Int. Conf. “Physical-Chemical and Petrographic Research in the Earth Sciences”), Moscow, Borok, 2012, pp. 236–239.

  80. Saxena, S.K., Planetary phase equilibria: application to formation of Earth, Venus and Mercury, Geochim. Cosmochim. Acta, 1981, vol. 45, no. 6, pp. 813–820.

    Article  ADS  Google Scholar 

  81. Schulze, H., Kissel, J., and Jessberger, E., Chemistry and mineralogy of Comet Halley’s dust, in Stardust to Planetesimals, ASP Conference Series, Pendleton, Y.J. and Tielens, A.G.G.M., Eds., 1997, vol. 122, pp. 397–414.

    Google Scholar 

  82. Scott, E.R.D. and Krot, A.N., Thermal processing of silicate dust in the solar nebula: Clues from primitive chondrite matrices, Astrophys. J., 2005, vol. 623, no. 1, pp. 571–578.

    Article  ADS  Google Scholar 

  83. Shinnaka, Y., Ootsubo, T., Kawakita, H., Yamaguchi, M., Honda, M., and Watanabe, J., Mid-infrared spectroscopic observations of comet 17P/Holmes immediately after its great outburst in 2007 October, Astron. J., 2018, vol. 156, no. 5, p. 242.

    Article  ADS  Google Scholar 

  84. Shmidt, O.Yu., Chetyre lektsii o teorii proiskhozhdeniya Zemli (Four Lectures on the Theory of the Origin of the Earth), Moscow: Izd. Akad. Nauk SSSR, 1957.

  85. Urpin, V.A., Hydrodynamic flows in accretion disks, Sov. Astron., 1984, vol. 28, pp. 50–53.

    ADS  MATH  Google Scholar 

  86. Vincent, J.-B., Bodewits, D., Besse, S., Sierks, H., Barbieri, C., Lamy, P., Rodrigo, R., Koschny, D., Rickman, H., Keller, H.U., Agarwal, J., A’Hearn, M.F., Auger, A.-T., Barucci, M.A., Bertaux, J.-L., Bertini, I., Capanna, C., Cremonese, G., Deppo, V., Davidsson, B., Debei, S., de Cecco, M., El-Maarry, M.R., Ferri, F., Fornasier, S., Fulle, M., Gaskell, R., Giacomini, L., Groussin, O., Guilbert-Lepoutre, A., Gutierrez-Marques, P., Gutierrez, P.J., Guttler, C., Hoekzema, N., Höfner, S., Hviid, S.F., Ip, W.-H., Jorda, L., Knollenberg, J., Kovacs, G., Kramm, R., Kührt, E., Küppers, M., La Forgia, F., Lara, L.M., Lazzarin, M., Lee, V., Leyrat, C., Lin, Z.-Y., Lopez, M., Lowry, S., Magrin, S., Maquet, L., Marchi, S., Marzari, F., Massironi, M., Michalik, H., Moissl, R., Mottola, S., Naletto, G., Oklay, N., Pajola, M., Preusker, F., Scholten, F., Thomas, N., Toth, I., and Tubiana, C., Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse, Nature, 2015, vol. 523, no. 7558, pp. 63–66.

    Article  ADS  Google Scholar 

  87. Vorobyov, E.I., Destruction of massive fragments in protostellar disks and crystalline silicate production, Astrophys. J. Lett., 2011, vol. 728, no. 2, id. L45.

  88. Vorobyov, E.I. and Basu, S., The burst mode of protostellar accretion, Astrophys. J., 2006, vol. 650, no. 2, pp. 956–969.

    Article  ADS  Google Scholar 

  89. Vorobyov, E.I. and Basu, S., The burst mode of accretion and disk fragmentation in the early embedded stages of star formation, Astrophys. J., 2010, vol. 719, no. 2, pp. 1896–1911.

    Article  ADS  Google Scholar 

  90. Waite, J.H., Lewis, W.S., Magee, B.A., Lunine, J., McKinnon, W.B., Glein, C.R., Mousis, O., Young, D.T., Brockwell, T., Weslake, J., Nguyen, M.-J., Teolis, B.D., Niemann, H.B., McNutt, R.L., Perry, M., and Ip, W.H., Liquid water on Enceladus from observations of ammonia and 40Ar in the plume, Nature, 2009, vol. 460, no. 7254, pp. 487–490.

    Article  ADS  Google Scholar 

  91. Wood, B.E., Linsky, J.L., Hebrard, G., Williger, G.M., Moos, H.W., and Blair, W.P., Two new low Galactic D/H measurements from the Far Ultraviolet Spectroscopic Explorer, Astrophys. J., 2004, vol. 609, pp. 838–853.

    Article  ADS  Google Scholar 

  92. Wooden, D.H., Harker, D.E., Woodward, C.E., Butner, H.M., Koike, C., Witteborn, F.C., and McMurtry, C.W., Silicate mineralogy of the dust in the inner coma of comet C/1995 01 (Hale–Bopp) pre- and postperihelion, Astrophys. J., 1999, vol. 517, no. 2, pp. 1034–1058.

    Article  ADS  Google Scholar 

  93. Wooden, D.H., Woodward, C.E., and Harker, D.E., Discovery of crystalline silicates in comet C/2001 Q4 (NEAT), Astrophys. J., 2004, vol. 612, pp. L77–L80.

    Article  ADS  Google Scholar 

  94. Wooden, D.H., Desch, S., Harker, D., Gail, H.-P., and Keller, L., Comet grains and implications for heating and radial mixing in the protoplanetary disk, in Protostars and Planets V, Reipurth, B., Jewitt, D., and Keil, K., Eds., Tucson: Univ. Arizona Press, 2006, pp. 815–833.

    Google Scholar 

  95. Wooden, D.H., Ishii, H.A., and Zolensky, M.E., Cometary dust: the diversity of primitive refractory grains, Philos. Trans. R. Soc., 2017, vol. A375, no. 2097, id. 21386889.

  96. Xing, Z., Bodewits, D., and Bannister, M.T., Water production rates and activity of interstellar comet 2I/Borisov, Astrophys. J. Lett., 2020, vol. 893, id. L48.

  97. Yang, L., Ciesla, F.J., and Alexander, C.M., The D/H ratio of water in the solar nebula during its formation and evolution, Icarus, 2013, vol. 226, pp. 256–267.

    Article  ADS  Google Scholar 

  98. Yang, B., Li, A., Cordiner, M.A., Chang, C.-S., Hainaut, O.R., Williams, J.P., Meech, K.J., Keane, J.V., and Villard, E., Compact pebbles and the evolution of volatiles in the interstellar comet 2I/Borisov, Nat. Astron., 2021, vol. 5, pp. 586–593.

    Article  ADS  Google Scholar 

  99. Zubko, E., Chornaya, E., Videen, G., and Kim, S.S., Clues to understanding the microphysics of dust in the interstellar comet C/2019 Q4 (Borisov), Res. Notes Am. Astron. Soc., 2019, vol. 3, no. 9, id. 138.

Download references

Funding

The study was performed under a government contract of the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dorofeeva.

Ethics declarations

The author declares that she has no conflicts of interest.

Additional information

Translated by E. Petrova

Based on the 7th Bredikhin Conference Proceedings (May 2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeeva, V.A. The Role of Radial Transport in Forming Minor Bodies of the Outer Solar System. Sol Syst Res 56, 168–182 (2022). https://doi.org/10.1134/S0038094622020034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094622020034

Keywords:

Navigation