Skip to main content
Log in

Rare-Earth Mineralization in Terrigenous Rocks of the Shatak Complex (Southern Urals): Species Diversity and Features of Chemical Composition

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The study of terrigenous rocks of the Shatak Complex, which includes rocks of the Kuz”elga and Karan subformations (Mashak Formation, Upper Riphean) revealed numerous rare-earth minerals: allanite-(Ce), monazite-(Se), monazite-(Nd), xenotime-(Y), REE-bearing epidote, and unidentified compounds. It has been established that the detrital zircon plays the role of a selective concentrator of Y, HREE, and Th during the terrigenous rock metamorphism. The comparative analysis showed that rare-earth minerals, such as monazite-(Ce) and xenotime-(Y), in the Shatak Complex differ significantly (in terms of chemical composition) from counterparts in other complexes located on the western slope of the Southern Urals by the presence of Gd in monazite, and LREE (Ce, Nd, Sm) in xenotime. In the case of similar thermobaric parameters of rock metamorphism characterizing the alteration degree of lithostructural complexes in the Southern Urals, the chemistry of mineral formation environment is among the main factors governing the compositional features of rare-earth minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. The term “REE-bearing epidote” is applied to minerals containing a small amount of REE (Gieré and Sorensen, 2004).

REFERENCES

  1. Alekseev, A.A., Alekseeva, G.V., and Timofeeva, E.A., Monazite mineralization and perspectives of REE mineralization in Riphean rocks of the Bashkir meganticlinorium, Geol., Polez. Iskop. Probl. Ekol. Bashkortostana, 2003, vol. 2, pp. 112–115.

    Google Scholar 

  2. Alekseev, A.A. and Timofeeva, E.A., The rare earth–phosphate mineralization in Riphean metaterrigenous sequences of the Bashkir meganticlinorium, Geol. Sborn., 2007, no. 3, pp. 194–195.

  3. Anenburg, M., Katzir, Y., Rhede, D., Jöns, N., and Bach, W., Rare earth element evolution and migration in plagiogranites: a record preserved in epidote and allanite of the Troodos ophiolite, Contrib Miner. Petrol., 2015, vol. 169, pp. 1–19. https://doi.org/10.1007/s00410-015-1114-y

    Article  CAS  Google Scholar 

  4. Budzyń, B., Harlov, D.E., Kozub-Budzyń, G.A., and Majka, J., Experimental constraints on the relative stabilities of the two systems monazite-(Ce)—allanite-(Ce)—fluorapatite and xenotime-(Y)—(Y,HREE)-rich epidote— (Y,HREE)-rich fluorapatite, in high Ca and Na–Ca environments under P–T conditions of 200–1000 MPa and 450–750°C, Mineral. Petrol., 2017, vol. 111, pp. 183–217. https://doi.org/10.1007/s00710-016-0464-0

    Article  ADS  CAS  Google Scholar 

  5. Bulakh, A.G., Rukovodstvo i tablitsy dlya rascheta formul mineralov (Manual and Tables for the Calculation of Mineral Formulas), Moscow: Nedra, 1967.

  6. Cabella, R., Lucchetti, G., and Marescotti, P., Authigenic monazite and xenotime from pelitic metacherts in pumpellyite-actinolite-facies conditions, Sestri-Voltaggio Zone, central Liguria, Italy, Can. Mineral., 2001, vol. 39, pp. 717–727.

    Article  CAS  Google Scholar 

  7. Fedotova, A.A., Bibikova, E.V., and Simakin, S.G., Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies, Geochem. Int., 2008, no. 9, pp. 912–927.

  8. Finger, F. and Krenn, E., Three metamorphic monazite generations in a high-pressure rocks from Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop, Lithos, 2006, vol. 95, pp. 103–115.

    Article  ADS  Google Scholar 

  9. Franz, G., Anderehs, G., and Rhede, D., Crystal chemistry of monazite and xenotime from Saxothuringian-Moldanubian metapelites, NE Bavaria, Germany, Eur. J. Miner., 1996, vol. 8, no. 5, pp. 1097–1118.

    Article  CAS  Google Scholar 

  10. Gibson, D.H., Carr, S.D., Brown, R.L., and Hamilton, M.A., Correlations between chemical and age domains in monazite, and metamorphic reactions involving major pelitic phases: an integration of ID-TIMS and SHRIMP geochronology with Y-Th-U X-ray mapping, Chem. Geol., 2004, vol. 211, pp. 237–260. https://doi.org/10.1016/J.CHEMGEO.2004.06.028

    Article  ADS  CAS  Google Scholar 

  11. Gieré, R. and Sorensen, S.S., Allanite and other REE-rich epidote-group minerals, Rev. Miner. Geochem., 2004, vol. 56, pp. 431–493.

    Article  Google Scholar 

  12. Harley, S.L., Kelly, N.M., and Molle, A., Zircon behaviour and the thermal histories of mountain chains, Elements, 2007, vol. 3, pp. 25–30. https://doi.org/10.2113/gselements.3.1.25

    Article  ADS  CAS  Google Scholar 

  13. Hay, D.C. and Dempster, T.J., Zircon behaviour during low-temperature metamorphism, J. Petrol., 2009, vol. 50, no. 4, pp. 571–589. https://doi.org/10.1093/petrology/egp011

    Article  ADS  CAS  Google Scholar 

  14. Heinrich, W., Andrehs, G., and Franz, G., Monazite-xenotime miscibility gap thermometry. I. An empirical calibration, J. Metam. Geol., 1997, vol. 15, no. 1, pp. 3–16. https://doi.org/10.1111/j.1525-1314.1997.t01-1-00052.x

    Article  CAS  Google Scholar 

  15. Hoskin, P.W.O., The composition of zircon and igneous and metamorphic petrogenesis, Rev. Miner. Geochem., 2003, vol. 53, no. 1, pp. 27–62. https://doi.org/10.2113/0530027

    Article  CAS  Google Scholar 

  16. Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J.-O., and Spandler, C., Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-monazite-xenotime phase relations from 250 to 610°C, J. Metam. Geol., 2008, vol. 26, pp. 509–526. https://doi.org/10.1111/j.1525-1314.2008.00774.x

    Article  CAS  Google Scholar 

  17. Janots, E., Engi, M., Rubatto, D., Berger, A., Gregory, C., and Rahn, M., Metamorphic rates in collisional orogeny from in situ allanite and monazite dating, Geology, 2009, vol. 37, no. 1, pp. 11–14.

    Article  ADS  CAS  Google Scholar 

  18. Kohn, M.J. and Malloy, M.A., Formation of monazite via prograde metamorphic reactions among common silicates: Implications for age determinations, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 1, pp. 101–113.

    Article  ADS  CAS  Google Scholar 

  19. Kovalev, S.G. and Kovalev, S.S., Mineral-forming processes in volcanosedimentary rocks of the Shatak Complex (southern Urals), Geol. Vestn., 2020, no. 3, pp. 27–46. https://doi.org/10.31084/2619-0087/2020-3-2

  20. Kovalev, S.G. and Kovalev, S.S., The xenotime mineralization in various lithostructural complexes of the Bashkir meganticlinorium (southern Urals), Zap. Ross. Miner. Ob-va, 2022, vol. 151, no. 1, pp. 74–91.

    Google Scholar 

  21. Kovalev, S.G. and Kovalev, S.S., First data on the Th–REE mineralization in basic and ultrabasic igneous rocks on the western slope of the southern Urals, Georesursy, 2023, vol. 25, no. 1, pp. 95–107.

    Article  CAS  Google Scholar 

  22. Kovalev, S.G. and Vysotskii, I.V., A new type of noble metal mineralization in terrigenous rocks of the Shatak graben, western slope of the southern Urals, Lithol. Miner. Resour., 2006, no. 4, pp. 371–377.

  23. Kovalev, S.G. and Vysotskii, I.V., New data on geology of the Shatak Complex (western slope of the southern Urals), Lithol. Miner. Resour., 2008, no. 3, pp. 250–259.

  24. Kovalev, S.G., Kovalev, S.S., and Vysotskii, S.I., The Th–REE mineralization in Precambrian rocks of the Bashkir meganticlinorium: Species diversity and genesis, Zap. Ross. Miner. Ob-va, 2017a, no. 5, pp. 59–79.

  25. Kovalev, S.G., Vysotskii, S.I., and Puchkov, V.N. The first finds of paragenetic Th–REE mineralization in Precambrian rocks of the Shatak Complex (southern Urals), Dokl. Earth Sci., 2017b, vol. 476, no. 5, pp. 1181–1186.

    Article  ADS  CAS  Google Scholar 

  26. Kovalev, S.G., Vysotskii, S.I., and Kovalev, S.S., Model of the formation of igneous rocks of the Shatak Complex, Geol. Vestn., 2018a, no. 2, pp. 3–13. https://doi.org/10.31084/2619-0087/2018-2-1

  27. Kovalev, S.S., Puchkov, V.N., Kovalev, S.G., and Vysotskii, S.I., The first quantitative evaluation data on Vendian metamorphism in the eastern part of the Bashkir Meganticlinorium, Dokl. Earth Sci., 2018b, vol. 483, no. 3, pp. 1418–1422.

    Article  ADS  CAS  Google Scholar 

  28. Krivovichev, V.G. and Gul’bin, Yu.L., Recommendations for the calculation and presentation of mineral formulas based on the chemical analysis data, Zap. Ross. Miner. Obs-va, 2022, part 151, no. 1, pp. 114–124.

  29. Kuleshevich, L. V. and Dmitrieva, A.V., Minerals and sources of rare earth elements in Karelia, Uchen. Zap. Petrozav. Gos. Un-ta. Nauki Zemle, 2012, no. 4, pp. 62–66. https://www.elibrary.ru/item.asp?id=17774393.

  30. Makeyev, A.B. and Skublov, S.G., Y–REE-rich Zzrcons of the Timan region: Geochemistry and economic significance, Geochem. Int., 2016, no. 9, pp. 788–794.

  31. Maslov, A.V., Krupenin, M.T., Ronkin, Yu.L., Gareev, E.Z., Lepikhina, O.P., and Popova, O.Yu., Fine-grained aluminosiliciclastic rocks of the Middle Riphean stratotype section in the southern Urals: Formation conditions, composition, and provenance evolution, Lithol. Miner. Resour., 2004, no. 4, pp. 345–381.

  32. Maslov, A.V., Gareev, E.Z., Podkovyrov, V.N., Kovalev, S.G., and Kotova, L.N., Synrift sedimentary rocks of the Middle Riphean Mashak Formation in the southern Urals (brief lithochemical characteristics), Vestn. St. Petersb. Gos. Univ., Nauki Zemle, 2018, vol. 63, no. 3, pp. 303–325.

    CAS  Google Scholar 

  33. Maslov, A.V., Gareev, E.Z., Podkovyrov, V.N., and Kovalev, S.G., Lithogeochemistry of clastic rocks of the Mashak Formation (western sloppe of South Urals): Search for “masked” pyroclastics, Vestn. St. Petersb. Gos. Univ., Nauki Zemle, 2020, vol. 65, no. 1, pp. 121–145. https://doi.org/10.21638/spbu07.2020.107

    Article  Google Scholar 

  34. Overstreet, W.C., The Geologic Occurrence of Monazite, Prof. Pap., 1967. https://doi.org/10.3133/pp530

  35. Parnachev, V.P., Rotar, A.F., and Rotar, Z.M., Srednerifeiskaya vulkanogenno-osadochnaya assotsiatsiya Bashkirskogo megantiklinoriya (Yuzhnyi Ural) (Middle Riphean Volcanosedimentary Association in the Bashkir Meganticlinorium, Southern Urals), Sverdlovsk: UNTs AN SSSR, 1986.

  36. Petrik, I., Broska, I., Lipka, J., and Siman, P., Granitoid allanite-(Ce) substitution relations, redox conditions and ree distributions (on an example of I-type granitoids, Western Carpathians, Slovakia), Geol. Carpath., 1995, vol. 46, no. 2, pp. 79–94.

    CAS  Google Scholar 

  37. Puchkov, V.N., Paleogeodinamika Yuzhnogo i Srednego Urala (Paleogeodynamics of the Southern and Middle Urals), Ufa: Dauriya, 2000.

  38. Puchkov, V.N., Geologiya Urala i Priural’ya (aktual’nye voprosy stratigrafii, tektoniki, geodinamiki i metallogenii) (Geology of the Urals and Cis-Urals: Pressing Issues of Stratigraphy, Tectonics, Geodynamics, and Metallogeny), Ufa: DizainPoligrafServis, 2010.

  39. Rudnick, R.L. and Gao, S., Composition of the continental crust, in Treatise on Geochemistry, 2003, vol. 3, pp. 1–64.

  40. Santana, I.V., Wall, F., and Botelho, N.F., Occurrence and behavior of monazite-(Ce) and xenotime-(Y) in detrital and saprolitic environments related to the Serra Dourada granite, Goiás/Tocantins State, Brazil: Potential for REE deposits, J. Geochem. Expl., 2015, vol. 155, pp. 1–13.

    Article  CAS  Google Scholar 

  41. Savko, K.A., Korish, E.Kh., Pilyugin, S.M., and Polyakova, T.N., Phase relations of REE-bearing minerals during the metamorphism of carbonaceous shales in the Tim–Yastrebovskaya structure, Voronezh crystalline massif, Russia, Petrology, 2010, vol. 18, no. 4, pp. 384–415.

    Article  CAS  Google Scholar 

  42. Skublov, S.G., Marin, Yu.B., Galankina, O.L., Simakin, S.G., Myskova, T.A., and Astaf’ev, B.Yu., The first discovery of abnormal (Y+REE)-enriched zircons in rocks of the Baltic Shield, Dokl. Earth Sci., 2011, vol. 441, no. 6, pp. 1724–1731.

    Article  CAS  Google Scholar 

  43. Smith, H.A. and Barero, B., Monazite U–Pb dating of staurolite grade metamorphism in pelitic schists, Contrib. Miner. Petrol., 1990, vol. 105, pp. 602–615.

    Article  ADS  CAS  Google Scholar 

  44. Sun, S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. London Spec. Publ., 1989, vol. 42, pp. 313–345.

    Article  ADS  Google Scholar 

  45. Tomkins, H.S. and Pattison, D.R.M., Accessory phase petrogenesis in relation to major phase assemblages in pelites from the Nelson contact aureole, southern British Columbia, J. Metam. Geol., 2007, vol. 25, no. 4, pp. 401–421. https://doi.org/10.1111/j.1525-1314.2007.00702.x

    Article  CAS  Google Scholar 

  46. Wing, B.A., Ferry, J.M., and Harrison, T.M., Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology, Contrib. Mineral. Petrol., 2003, vol. 145, pp. 228–250. www.elibrary.ru/item.asp?id=17774393.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 23-27-00023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kovalev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Sakya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, S.G., Kovalev, S.S. & Sharipova, A.A. Rare-Earth Mineralization in Terrigenous Rocks of the Shatak Complex (Southern Urals): Species Diversity and Features of Chemical Composition. Lithol Miner Resour 59, 14–26 (2024). https://doi.org/10.1134/S0024490223700402

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490223700402

Keywords:

Navigation