Skip to main content
Log in

Advancing fetal diagnosis and prognostication using comprehensive prenatal phenotyping and genetic testing

  • Review Article
  • Published:
Pediatric Research Submit manuscript

Abstract

Prenatal diagnoses of congenital malformations have increased significantly in recent years with use of high-resolution prenatal imaging. Despite more precise radiological diagnoses, discussions with expectant parents remain challenging because congenital malformations are associated with a wide spectrum of outcomes. Comprehensive prenatal genetic testing has become an essential tool that improves the accuracy of prognostication. Testing strategies include chromosomal microarray, exome sequencing, and genome sequencing. The diagnostic yield varies depending on the specific malformations, severity of the abnormalities, and multi-organ involvement. The utility of prenatal genetic diagnosis includes increased diagnostic clarity for clinicians and families, informed pregnancy decision-making, neonatal care planning, and reproductive planning. Turnaround time for results of comprehensive genetic testing remains a barrier, especially for parents that are decision-making, although this has improved over time. Uncertainty inherent to many genetic testing results is a challenge. Appropriate genetic counseling is essential for parents to understand the diagnosis and prognosis and to make informed decisions. Recent research has investigated the yield of exome or genome sequencing in structurally normal fetuses, both with non-invasive screening methods and invasive diagnostic testing; the prenatal diagnostic community must evaluate and analyze the significant ethical considerations associated with this practice prior to generalizing its use.

Impact

  • Reviews available genetic testing options during the prenatal period in detail.

  • Discusses the impact of prenatal genetic testing on care using case-based examples.

  • Consolidates the current literature on the yield of genetic testing for prenatal diagnosis of congenital malformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Yield of chromosomal microarray and exome sequencing in prenatal testing.
Fig. 2: Incremental yield of exome sequencing (ES) over chromosomal microarray (CMA) in isolated and multisystem fetal malformations in meta-analysis data.
Fig. 3: Average turnaround time of exome sequencing (ES) or genome sequencing (GS) over time.

Similar content being viewed by others

References

  1. Salomon, L. J. et al. ISUOG Practice Guidelines (updated): performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 59, 840–856 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Reddy, U. M., Abuhamad, A. Z., Levine, D., Saade, G. R. & Fetal Imaging Workshop Invited Participants*. Fetal imaging: executive summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, American Institute of Ultrasound in Medicine, American College of Obstetricians and Gynecologists, American College of Radiology, Society for Pediatric Radiology, and Society of Radiologists in Ultrasound Fetal Imaging workshop. Obstet. Gynecol. 123, 1070–1082 (2014).

    Article  PubMed  Google Scholar 

  3. American College of Obstetricians and Gynecologists, American College of Radiology, & American Institute of Ultrasound in Medicine.Practice Bulletin No. 175: Ultrasound in pregnancy. Obstet. Gynecol. 128, e241–e256 (2016).

    Article  Google Scholar 

  4. Dolk, H., Loane, M. & Garne, E. The prevalence of congenital anomalies in Europe. Adv. Exp. Med. Biol. 686, 349–364 (2010).

    Article  PubMed  Google Scholar 

  5. Centers for Disease Control and Prevention (CDC). Update on overall prevalence of major birth defects-Atlanta, Georgia, 1978-2005. MMWR Morb. Mortal. Wkly. Rep. 57, 1–5 (2008).

    Google Scholar 

  6. Kirby, R. S. The prevalence of selected major birth defects in the United States. Semin. Perinatol. 41, 338–344 (2017).

    Article  PubMed  Google Scholar 

  7. American Institute of Ultrasound in Medicine. AIUM-ACR-ACOG-SMFM-SRU practice parameter for the performance of standard diagnostic obstetric ultrasound examinations. J. Ultrasound Med. 37, E13–E24 (2018).

    Google Scholar 

  8. Prayer, D. et al. ISUOG Practice Guidelines (updated): performance of fetal magnetic resonance imaging. Ultrasound Obstet. Gynecol. 61, 278–287 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Counsell, S. J., Arichi, T., Arulkumaran, S. & Rutherford, M. A. Chapter 4 - Fetal and neonatal neuroimaging. In Handbook of Clinical Neurology (eds. de Vries, L. S. & Glass, H. C.) Vol. 162 67–103 (Elsevier, 2019).

  10. Chaudhari, B. P. & Ho, M.-L. Congenital Brain Malformations: An Integrated Diagnostic Approach. Semin. Pediatr. Neurol. 42, 100973 (2022).

    Article  PubMed  Google Scholar 

  11. American College of Obstetricians and Gynecologists. Guidelines for Diagnostic Imaging During Pregnancy and Lactation. 130, (2017).

  12. Smith, F. W., Adam, A. H. & Phillips, W. D. NMR imaging in pregnancy. Lancet Lond. Engl. 1, 61–62 (1983).

    Article  CAS  Google Scholar 

  13. McCarthy, S. et al. Magnetic resonance imaging of fetal anomalies in utero: early experience. Am. J. Roentgenol. 145, 677–682 (1985).

    Article  CAS  Google Scholar 

  14. Gonçalves, L. F. et al. Diagnostic accuracy of ultrasonography and magnetic resonance imaging for the detection of fetal anomalies: a blinded case–control study. Ultrasound Obstet. Gynecol. 48, 185–192 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rossi, A. C. & Prefumo, F. Additional value of fetal magnetic resonance imaging in the prenatal diagnosis of central nervous system anomalies: a systematic review of the literature. Ultrasound Obstet. Gynecol. 44, 388–393 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Quinn, T. M., Hubbard, A. M. & Adzick, N. S. Prenatal magnetic resonance imaging enhances fetal diagnosis. J. Pediatr. Surg. 33, 553–558 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Dinh, D. H., Wright, R. M. & Hanigan, W. C. The use of magnetic resonance imaging for the diagnosis of fetal intracranial anomalies. Childs Nerv. Syst. 6, 212–215 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Kaminen-Ahola, N. Fetal alcohol spectrum disorders: genetic and epigenetic mechanisms. Prenat. Diagn. 40, 1185–1192 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Gheysen, W. & Kennedy, D. An update on maternal medication-related embryopathies. Prenat. Diagn. 40, 1168–1177 (2020).

    Article  PubMed  Google Scholar 

  20. Vargesson, N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res. C. Embryo Today 105, 140–156 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Henry, D. et al. Occurrence of pregnancy and pregnancy outcomes during isotretinoin therapy. CMAJ 188, 723–730 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sangah, A. B. et al. Maternal and fetal outcomes of SLE in pregnancy: a literature review. J. Obstet. Gynaecol. 43, 2205513 (2023).

    Article  PubMed  Google Scholar 

  23. Li, Y., Wang, W., Wang, Y. & Chen, Q. Fetal risks and maternal renal complications in pregnancy with preexisting chronic glomerulonephritis. Med. Sci. Monit. 24, 1008–1016 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huget-Penner, S. & Feig, D. S. Maternal thyroid disease and its effects on the fetus and perinatal outcomes. Prenat. Diagn. 40, 1077–1084 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Limaye, M. A., Buyon, J. P., Cuneo, B. F. & Mehta-Lee, S. S. A review of fetal and neonatal consequences of maternal systemic lupus erythematosus. Prenat. Diagn. 40, 1066–1076 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Mardy, A. H., Chetty, S. P. & Norton, M. E. Maternal genetic disorders and fetal development. Prenat. Diagn. 40, 1056–1065 (2020).

    Article  PubMed  Google Scholar 

  27. Bussel, J. B., Vander Haar, E. L. & Berkowitz, R. L. New developments in fetal and neonatal alloimmune thrombocytopenia. Am. J. Obstet. Gynecol. 225, 120–127 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Murakhovskaya, I. & Demasio, K. A. Maternal hematologic conditions and fetal/neonatal outcomes of pregnancy. NeoReviews 22, e95–e103 (2021).

    Article  PubMed  Google Scholar 

  29. Van Mieghem, T. et al. Monochorionic monoamniotic twin pregnancies. Am. J. Obstet. Gynecol. MFM 4, 100520 (2022).

    Article  PubMed  Google Scholar 

  30. Lerman-Sagie, T., Pogledic, I., Leibovitz, Z. & Malinger, G. A practical approach to prenatal diagnosis of malformations of cortical development. Eur. J. Paediatr. Neurol. 34, 50–61 (2021).

    Article  PubMed  Google Scholar 

  31. Curcio, A. M., Shekhawat, P., Reynolds, A. S. & Thakur, K. T. Neurologic infections during pregnancy. In Handbook of Clinical Neurology, Vol. 172 (eds. Steegers, E. A. P., Cipolla, M. J. & Miller, E. C.) 79–104 (Elsevier, 2020).

  32. Moodley, A. & Payton, K. S. E. The term newborn: congenital infections. Clin. Perinatol. 48, 485–511 (2021).

    Article  PubMed  Google Scholar 

  33. Satti, K. F., Ali, S. A. & Weitkamp, J.-H. Congenital infections, part 2: parvovirus, listeria, tuberculosis, syphilis, and varicella. NeoReviews 11, e681–e695 (2010).

    Article  Google Scholar 

  34. Tian, C., Ali, S. A. & Weitkamp, J.-H. Congenital infections, part i: cytomegalovirus, toxoplasma, rubella, and herpes simplex. NeoReviews 11, e436–e446 (2010).

    Article  Google Scholar 

  35. Best, S. et al. Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat. Diagn. 38, 10–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Vora, N. L. et al. Prenatal exome sequencing in anomalous fetuses: new opportunities and challenges. Genet. Med. 19, 1207–1216 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jelin, A. C., Sagaser, K. G. & Wilkins-Haug, L. Prenatal genetic testing options. Pediatr. Clin. N. Am. 66, 281–293 (2019).

    Article  Google Scholar 

  38. Bianchi, D. W. et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet. Gynecol. 119, 890 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Gil, M. M. et al. Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: update of The Fetal Medicine Foundation results and meta-analysis. Ultrasound Obstet. Gynecol. 53, 734–742 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Harris, S., Reed, D. & Vora, N. L. Screening for fetal chromosomal and subchromosomal disorders. Semin. Fetal Neonatal Med. 23, 85–93 (2018).

    Article  PubMed  Google Scholar 

  41. Dungan, J. S. et al. Noninvasive prenatal screening (NIPS) for fetal chromosome abnormalities in a general-risk population: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 25, 100336 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Dar, P. et al. Cell-free DNA screening for prenatal detection of 22q11.2 deletion syndrome. Am. J. Obstet. Gynecol. 227, 79.e1–79.e11 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Ehrich, M. et al. Genome-wide cfDNA screening: clinical laboratory experience with the first 10,000 cases. Genet. Med. 19, 1332–1337 (2017).

    Article  PubMed  Google Scholar 

  44. Hayward, J. & Chitty, L. S. Beyond screening for chromosomal abnormalities: advances in non-invasive diagnosis of single gene disorders and fetal exome sequencing. Semin. Fetal Neonatal Med. 23, 94–101 (2018).

    Article  PubMed  Google Scholar 

  45. Chitty, L. S. et al. Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenat. Diagn. 35, 656–662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sparks, T. N. & Dugoff, L. How to choose a test for prenatal genetic diagnosis: a practical overview. Am. J. Obstet. Gynecol. 228, 178–186 (2023).

    Article  PubMed  Google Scholar 

  47. Jelin, A. C. & Vora, N. Whole exome sequencing: applications in prenatal genetics. Obstet. Gynecol. Clin. N. Am. 45, 69–81 (2018).

    Article  Google Scholar 

  48. Manickam, K. et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 23, 2029–2037 (2021).

    Article  PubMed  Google Scholar 

  49. Monaghan, K. G., Leach, N. T., Pekarek, D., Prasad, P. & Rose, N. C. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 22, 675–680 (2020).

    Article  PubMed  Google Scholar 

  50. Maguire, M. et al. Grief after second-trimester termination for fetal anomaly: a qualitative study. Contraception 91, 234–239 (2015).

    Article  PubMed  Google Scholar 

  51. Botkin, J. R. et al. Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents. Am. J. Hum. Genet. 97, 6–21 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Horn, R. & Parker, M. Opening Pandora’s box?: ethical issues in prenatal whole genome and exome sequencing. Prenat. Diagn. 38, 20–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Westerfield, L., Darilek, S. & Van den Veyver, I. B. Counseling challenges with variants of uncertain significance and incidental findings in prenatal genetic screening and diagnosis. J. Clin. Med. 3, 1018–1032 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chandler, N. et al. Rapid prenatal diagnosis using targeted exome sequencing: a cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management. Genet. Med. 20, 1430–1437 (2018).

    Article  PubMed  Google Scholar 

  55. Deden, C. et al. Rapid whole exome sequencing in pregnancies to identify the underlying genetic cause in fetuses with congenital anomalies detected by ultrasound imaging. Prenat. Diagn. 40, 972–983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Han, J. et al. Rapid prenatal diagnosis of skeletal dysplasia using medical trio exome sequencing: benefit for prenatal counseling and pregnancy management. Prenat. Diagn. 40, 577–584 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Olde Keizer, R. A. C. M. et al. Rapid exome sequencing as a first-tier test in neonates with suspected genetic disorder: results of a prospective multicenter clinical utility study in the Netherlands. Eur. J. Pediatr. 182, 2683–2692 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Matalon, D. R. et al. Clinical, technical, and environmental biases influencing equitable access to clinical genetics/genomics testing: a points to consider statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 25, 100812 (2023).

    Article  PubMed  Google Scholar 

  59. Kuppermann, M., Gates, E. & Eugene Washington, A. Racial-ethnic differences in prenatal diagnostic test use and outcomes: preferences, socioeconomics, or patient knowledge? Obstet. Gynecol. 87, 675–682 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Kuppermann, M. et al. Attitudes toward prenatal testing and pregnancy termination among a diverse population of parents of children with intellectual disabilities. Prenat. Diagn. 31, 1251–1258 (2011).

    Article  PubMed  Google Scholar 

  61. Case, A. P., Ramadhani, T. A., Canfield, M. A. & Wicklund, C. A. Awareness and attitudes regarding prenatal testing among texas women of childbearing age. J. Genet. Couns. 16, 655–661 (2007).

    Article  PubMed  Google Scholar 

  62. Yang, Y. et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312, 1870–1879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Valencia, C. A. et al. Clinical impact and cost-effectiveness of whole exome sequencing as a diagnostic tool: a pediatric center’s experience. Front. Pediatr. 3, 67 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Manning, M. & Hudgins, L. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet. Med. 12, 742–745 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wapner, R. J. et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 367, 2175–2184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shaffer, L. G. et al. Experience with microarray-based comparative genomic hybridization for prenatal diagnosis in over 5000 pregnancies. Prenat. Diagn. 32, 976–985 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lee, C.-N. et al. Clinical utility of array comparative genomic hybridisation for prenatal diagnosis: a cohort study of 3171 pregnancies. BJOG Int. J. Obstet. Gynaecol. 119, 614–625 (2012).

    Article  Google Scholar 

  68. Fiorentino, F. et al. Chromosomal microarray analysis as a first-line test in pregnancies with a priori low risk for the detection of submicroscopic chromosomal abnormalities. Eur. J. Hum. Genet. 21, 725–730 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Chong, H. P. et al. Prenatal chromosomal microarray testing of fetuses with ultrasound structural anomalies: a prospective cohort study of over 1000 consecutive cases. Prenat. Diagn. 39, 1064–1069 (2019).

    Article  PubMed  Google Scholar 

  70. Callaway, J. L. A., Shaffer, L. G., Chitty, L. S., Rosenfeld, J. A. & Crolla, J. A. The clinical utility of microarray technologies applied to prenatal cytogenetics in the presence of a normal conventional karyotype: a review of the literature. Prenat. Diagn. 33, 1119–1123 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Carss, K. J. et al. Exome sequencing improves genetic diagnosis of structural fetal abnormalities revealed by ultrasound. Hum. Mol. Genet. 23, 3269–3277 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alamillo, C. L. et al. Exome sequencing positively identified relevant alterations in more than half of cases with an indication of prenatal ultrasound anomalies. Prenat. Diagn. 35, 1073–1078 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Fu, F. et al. Application of exome sequencing for prenatal diagnosis of fetal structural anomalies: clinical experience and lessons learned from a cohort of 1618 fetuses. Genome Med. 14, 123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Normand, E. A. et al. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Med. 10, 74 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sparks, T. N. et al. Exome sequencing for prenatal diagnosis in nonimmune hydrops fetalis. N. Engl. J. Med. 383, 1746–1756 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lord, J. et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet 393, 747–757 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Petrovski, S. et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet 393, 758–767 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, Y. et al. Genomic architecture of fetal central nervous system anomalies using whole-genome sequencing. Npj Genom. Med. 7, 1–10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, L. et al. Genetic tests aid in counseling of fetuses with cerebellar vermis defects: prenatal diagnosis. Prenat. Diagn. 40, 1228–1238 (2020).

    Article  PubMed  Google Scholar 

  80. Drexler, K. A. et al. Association of deep phenotyping with diagnostic yield of prenatal exome sequencing for fetal brain abnormalities. Genet. Med. 25, 100915 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Qi, Q. et al. Simultaneous detection of CNVs and SNVs improves the diagnostic yield of fetuses with ultrasound anomalies and normal karyotypes. Genes 11, 1397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hu, P. et al. Whole genome sequencing vs chromosomal microarray analysis in prenatal diagnosis. Am. J. Obstet. Gynecol. https://doi.org/10.1016/j.ajog.2023.03.005 (2023).

  83. Miceikaite, I. et al. Comprehensive prenatal diagnostics: exome versus genome sequencing. Prenat. Diagn. 43, 1132–1141 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, Y. et al. Diagnostic yield of genome sequencing for prenatal diagnosis of fetal structural anomalies. Prenat. Diagn. 42, 822–830 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Zhou, J. et al. Whole genome sequencing in the evaluation of fetal structural anomalies: a parallel test with chromosomal microarray plus whole exome sequencing. Genes 12, 376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Greenbaum, L. et al. Evaluation of diagnostic yield in fetal whole-exome sequencing: a report on 45 consecutive families. Front. Genet. 10, 425 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Boissel, S. et al. Genomic study of severe fetal anomalies and discovery of GREB1L mutations in renal agenesis. Genet. Med. 20, 745–753 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, M. et al. Clinical application of medical exome sequencing for prenatal diagnosis of fetal structural anomalies. Eur. J. Obstet. Gynecol. Reprod. Biol. 251, 119–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. de Koning, M. A. et al. Prenatal exome sequencing: a useful tool for the fetal neurologist. Clin. Genet. 101, 65–77 (2022).

    Article  PubMed  Google Scholar 

  90. Drury, S. et al. Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat. Diagn. 35, 1010–1017 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Dufke, A. et al. A single center experience of prenatal parent-fetus trio exome sequencing for pregnancies with congenital anomalies. Prenat. Diagn. 42, 901–910 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Fu, F. et al. Whole exome sequencing as a diagnostic adjunct to clinical testing in fetuses with structural abnormalities. Ultrasound Obstet. Gynecol. 51, 493–502 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Gabriel, H. et al. Trio exome sequencing is highly relevant in prenatal diagnostics. Prenat. Diagn. 42, 845–851 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. He, M. et al. The added value of whole-exome sequencing for anomalous fetuses with detailed prenatal ultrasound and postnatal phenotype. Front. Genet. 12, 627204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Heide, S. et al. Prenatal exome sequencing in 65 fetuses with abnormality of the corpus callosum: contribution to further diagnostic delineation. Genet. Med. 22, 1887–1891 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Huang, R. et al. Whole exome sequencing improves genetic diagnosis of fetal clubfoot: human genetics. Hum. Genet. 142, 407–418 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Lei, L., Zhou, L. & Xiong, J. Whole-exome sequencing increases the diagnostic rate for prenatal fetal structural anomalies. Eur. J. Med. Genet. 64, 104288 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Tran Mau-Them, F. et al. Prenatal diagnosis by trio exome sequencing in fetuses with ultrasound anomalies: a powerful diagnostic tool. Front. Genet. 14, 1099995 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yaron, Y. et al. Exome sequencing as first-tier test for fetuses with severe central nervous system structural anomalies. Ultrasound Obstet. Gynecol. 60, 59–67 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yates, C. L. et al. Whole-exome sequencing on deceased fetuses with ultrasound anomalies: expanding our knowledge of genetic disease during fetal development. Genet. Med. 19, 1171–1178 (2017).

    Article  PubMed  Google Scholar 

  101. Mone, F. et al. COngenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study: prospective cohort study and systematic review. Ultrasound Obstet. Gynecol. 57, 43–51 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Mone, F. et al. Evolving fetal phenotypes and clinical impact of progressive prenatal exome sequencing pathways: cohort study. Ultrasound Obstet. Gynecol. 59, 723–730 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Vaknin, N. et al. High rate of abnormal findings in prenatal exome trio in low risk pregnancies and apparently normal fetuses. Prenat. Diagn. 42, 725–735 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Daum, H., Meiner, V., Elpeleg, O., Harel, T. & Authors, C. Fetal exome sequencing: yield and limitations in a tertiary referral center. Ultrasound Obstet. Gynecol. 53, 80–86 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Mellis, R., Oprych, K., Scotchman, E., Hill, M. & Chitty, L. S. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: a systematic review and meta-analysis. Prenat. Diagn. 42, 662–685 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shaffer, L. G. et al. Detection rates of clinically significant genomic alterations by microarray analysis for specific anomalies detected by ultrasound. Prenat. Diagn. 32, 986–995 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pauta, M., Martinez-Portilla, R. J. & Borrell, A. Diagnostic yield of exome sequencing in fetuses with multisystem malformations: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 59, 715–722 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Meler, E., Sisterna, S. & Borrell, A. Genetic syndromes associated with isolated fetal growth restriction. Prenat. Diagn. 40, 432–446 (2020).

    Article  PubMed  Google Scholar 

  109. Martins, J. G., Biggio, J. R. & Abuhamad, A. Society for Maternal-Fetal Medicine Consult Series #52: diagnosis and management of fetal growth restriction: (Replaces Clinical Guideline Number 3, April 2012). Am. J. Obstet. Gynecol. 223, B2–B17 (2020).

    Article  PubMed  Google Scholar 

  110. McCowan, L. M., Figueras, F. & Anderson, N. H. Evidence-based national guidelines for the management of suspected fetal growth restriction: comparison, consensus, and controversy. Am. J. Obstet. Gynecol. 218, S855–S868 (2018).

    Article  PubMed  Google Scholar 

  111. Lees, C. C. et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet. Gynecol. 56, 298–312 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Borrell, A. et al. Genomic microarray in fetuses with early growth restriction: a multicenter study. Fetal Diagn. Ther. 42, 174–180 (2017).

    Article  PubMed  Google Scholar 

  113. Zhou, H. et al. The genetic and clinical outcomes in fetuses with isolated fetal growth restriction: a chinese single-center retrospective study. Front. Genet. 13, 856522 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Borrell, A., Grande, M., Pauta, M., Rodriguez-Revenga, L. & Figueras, F. Chromosomal microarray analysis in fetuses with growth restriction and normal karyotype: a systematic review and meta-analysis. Fetal Diagn. Ther. 44, 1–9 (2017).

    Article  PubMed  Google Scholar 

  115. Zhou, H. et al. Genetic causes of isolated and severe fetal growth restriction in normal chromosomal microarray analysis. Int. J. Gynecol. Obstet. 161, 1004–1011 (2023).

    Article  CAS  Google Scholar 

  116. Mone, F. et al. Should we offer prenatal exome sequencing for intrauterine growth restriction or short long bones? A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 228, 409–417.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Pauta, M., Martinez-Portilla, R. J., Meler, E., Otaño, J. & Borrell, A. Diagnostic yield of exome sequencing in isolated fetal growth restriction: systematic review and meta-analysis. Prenat. Diagn. 43, 596–604 (2023).

    Article  PubMed  Google Scholar 

  118. Snijders, R., Noble, P., Sebire, N., Souka, A. & Nicolaides, K. UK multicentre project on assessment of risk of trisomy 21 by maternal age and fetal nuchal-translucency thickness at 10–14 weeks of gestation. Lancet 352, 343–346 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Nicolaides, K. H., Azar, G., Snijders, R. J. M. & Gosden, C. M. Fetal nuchal oedema: associated malformations and chromosomal defects. Fetal Diagn. Ther. 7, 123–131 (1992).

    Article  CAS  PubMed  Google Scholar 

  120. Kelley, J., McGillivray, G., Meagher, S. & Hui, L. Increased nuchal translucency after low-risk noninvasive prenatal testing: what should we tell prospective parents? Prenat. Diagn. 41, 1305–1315 (2021).

    Article  PubMed  Google Scholar 

  121. Prabhu, M., Kuller, J. A. & Biggio, J. R. Society for Maternal-Fetal Medicine Consult Series #57: Evaluation and management of isolated soft ultrasound markers for aneuploidy in the second trimester: (Replaces Consults #10, Single umbilical artery, October 2010; #16, Isolated echogenic bowel diagnosed on second-trimester ultrasound, August 2011; #17, Evaluation and management of isolated renal pelviectasis on second-trimester ultrasound, December 2011; #25, Isolated fetal choroid plexus cysts, April 2013; #27, Isolated echogenic intracardiac focus, August 2013). Am. J. Obstet. Gynecol. 225, B2–B15 (2021).

    Article  PubMed  Google Scholar 

  122. Bardi, F. et al. Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening? Prenat. Diagn. 40, 197–205 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Hui, L. et al. Reexamining the optimal nuchal translucency cutoff for diagnostic testing in the cell-free DNA and microarray era: results from the Victorian Perinatal Record Linkage study. Am. J. Obstet. Gynecol. 225, 527.e1–527.e12 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Miranda, J. et al. Should cell-free DNA testing be used in pregnancy with increased fetal nuchal translucency? Ultrasound Obstet. Gynecol. 55, 645–651 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Petersen, O. B. et al. Nuchal translucency of 3.0-3.4 mm an indication for NIPT or microarray? Cohort analysis and literature review. Acta Obstet. Gynecol. Scand. 99, 765–774 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Yang, X. et al. Exome sequencing improves genetic diagnosis of fetal increased nuchal translucency: prenatal diagnosis. Prenat. Diagn. 40, 1426–1431 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Mellis, R. et al. Fetal exome sequencing for isolated increased nuchal translucency: should we be doing it? BJOG. Int. J. Obstet. Gynaecol. 129, 52–61 (2022).

    Article  CAS  Google Scholar 

  128. Choy, K. W. et al. Prenatal diagnosis of fetuses with increased nuchal translucency by genome sequencing analysis. Front. Genet. 10, 761 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Di Girolamo, R. et al. Whole exome sequencing in fetuses with isolated increased nuchal translucency: a systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 36, 2193285 (2023).

    Article  PubMed  Google Scholar 

  130. Norton, M. E., Chauhan, S. P. & Dashe, J. S. Society for Maternal-Fetal Medicine (SMFM) Clinical Guideline #7: nonimmune hydrops fetalis. Am. J. Obstet. Gynecol. 212, 127–139 (2015).

    Article  PubMed  Google Scholar 

  131. Al-Kouatly, H. B. et al. High diagnosis rate for nonimmune hydrops fetalis with prenatal clinical exome from the Hydrops-Yielding Diagnostic Results of Prenatal Sequencing (HYDROPS) Study. Genet. Med. 23, 1325–1333 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Al-Kouatly, H. B. et al. Diagnostic yield from prenatal exome sequencing for non-immune hydrops fetalis: a systematic review and meta-analysis. Clin. Genet. 103, 503–512 (2023).

    Article  CAS  PubMed  Google Scholar 

  133. D’Antonio, F. et al. Outcomes associated with isolated agenesis of the corpus callosum: a meta-analysis. Pediatrics 138, e20160445 (2016).

    Article  PubMed  Google Scholar 

  134. D’Antonio, F. et al. Systematic review and meta-analysis of isolated posterior fossa malformations on prenatal imaging (part 2): neurodevelopmental outcome. Ultrasound Obstet. Gynecol. 48, 28–37 (2016).

    Article  PubMed  Google Scholar 

  135. Van den Veyver, I. B. Prenatally diagnosed developmental abnormalities of the central nervous system and genetic syndromes: a practical review. Prenat. Diagn. 39, 666–678 (2019).

    Article  PubMed  Google Scholar 

  136. Choi, J. J., Yang, E., Soul, J. S. & Jaimes, C. Fetal magnetic resonance imaging: supratentorial brain malformations. Pediatr. Radiol. 50, 1934–1947 (2020).

    Article  PubMed  Google Scholar 

  137. Lerman-Sagie, T., Prayer, D., Stöcklein, S. & Malinger, G. Chapter 1 - Fetal cerebellar disorders. In Handbook of Clinical Neurology (eds. Manto, M. & Huisman, T. A. G. M.) Vol. 155 3–23 (Elsevier, 2018).

  138. Kline-Fath, B. M. & Calvo-Garcia, M. A. Prenatal imaging of congenital malformations of the brain. Semin. Ultrasound CT MRI 32, 167–188 (2011).

    Article  Google Scholar 

  139. Sun, L. et al. Prenatal diagnosis of central nervous system anomalies by high-resolution chromosomal microarray analysis. BioMed. Res. Int. 2015, e426379 (2015).

    Article  Google Scholar 

  140. Zou, Z. et al. Prenatal diagnosis of posterior fossa anomalies: additional value of chromosomal microarray analysis in fetuses with cerebellar hypoplasia: Prenatal diagnosis. Prenat. Diagn. 38, 91–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Cai, M., Huang, H., Xu, L. & Lin, N. Clinical utility and the yield of single nucleotide polymorphism array in prenatal diagnosis of fetal central nervous system abnormalities. Front. Mol. Biosci. 8, 666115 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Mustafa, H. J. et al. Diagnostic yield with exome sequencing in prenatal severe bilateral ventriculomegaly: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 5, 101048 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Niles, K. M., Blaser, S., Shannon, P. & Chitayat, D. Fetal arthrogryposis multiplex congenita/fetal akinesia deformation sequence (FADS)—aetiology, diagnosis, and management. Prenat. Diagn. 39, 720–731 (2019).

    Article  PubMed  Google Scholar 

  144. Langston, S. & Chu, A. Arthrogryposis multiplex congenita. Pediatr. Ann. 49, e299–e304 (2020).

    Article  PubMed  Google Scholar 

  145. Filges, I., Jünemann, S., Viehweger, E. & Tercanli, S. Fetal arthrogryposis—what do we tell the prospective parents? Prenat. Diagn. 43, 798–805 (2023).

    Article  PubMed  Google Scholar 

  146. Ravenscroft, G. et al. Fetal akinesia: review of the genetics of the neuromuscular causes. J. Med. Genet. 48, 793–801 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Ravenscroft, G. et al. Neurogenetic fetal akinesia and arthrogryposis: genetics, expanding genotype-phenotypes and functional genomics. J. Med. Genet. 58, 609–618 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Allen, N. M. et al. The emerging spectrum of fetal acetylcholine receptor antibody-related disorders (FARAD). Brain 146, 4233–4246 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Liu, Y. et al. Prenatal diagnosis of fetal skeletal dysplasia using targeted next-generation sequencing: an analysis of 30 cases. Diagn. Pathol. 14, 76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Han, J. et al. Rapid prenatal diagnosis of skeletal dysplasia using medical trio exome sequencing: Benefit for prenatal counseling and pregnancy management: Prenatal diagnosis. Prenat. Diagn. 40, 577–584 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Wiechers, C. & Kagan, K. O. Fetal markers for the detection of infants with craniofacial malformation. Semin. Fetal Neonatal Med. 26, 101291 (2021).

    Article  PubMed  Google Scholar 

  152. Maulik, D., Nanda, N. C., Maulik, D. & Vilchez, G. A brief history of fetal echocardiography and its impact on the management of congenital heart disease. Echocardiography 34, 1760–1767 (2017).

    Article  PubMed  Google Scholar 

  153. Menahem, S., Sehgal, A. & Meagher, S. Early detection of significant congenital heart disease: the contribution of fetal cardiac ultrasound and newborn pulse oximetry screening. J. Paediatr. Child Health 57, 323–327 (2021).

    Article  PubMed  Google Scholar 

  154. Sanapo, L. et al. Fetal echocardiography for planning perinatal and delivery room care of neonates with congenital heart disease: echocardiography. Echocardiography 34, 1804–1821 (2017).

    Article  PubMed  Google Scholar 

  155. Hegde, B. N., Tsao, K. & Hirose, S. Management of congenital lung malformations. Clin. Perinatol. 49, 907–926 (2022).

    Article  PubMed  Google Scholar 

  156. Marine, M. B. & Forbes-Amrhein, M. M. Magnetic resonance imaging of the fetal gastrointestinal system. Pediatr. Radiol. Pediatr. Radiol. 50, 1895–1906 (2020).

    Article  PubMed  Google Scholar 

  157. Revels, J. W. et al. An algorithmic approach to complex fetal abdominal wall defects. Am. J. Roentgenol. 214, 218–231 (2020).

    Article  Google Scholar 

  158. Schedl, A. Renal abnormalities and their developmental origin. Nat. Rev. Genet. 8, 791–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Wu, C.-H. W. et al. Copy number variation analysis facilitates identification of genetic causation in patients with congenital anomalies of the kidney and urinary tract. Eur. Urol. Open Sci. 44, 106–112 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Koenigbauer, J. T. et al. Spectrum of congenital anomalies of the kidney and urinary tract (CAKUT) including renal parenchymal malformations during fetal life and the implementation of prenatal exome sequencing (WES). Arch. Gynecol. Obstet. https://doi.org/10.1007/s00404-023-07165-8 (2023).

  161. van der Ven, A. T. et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 2348 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Daum, H. et al. Exome sequencing for structurally normal fetuses—yields and ethical issues. Eur. J. Hum. Genet. 31, 164–168 (2023).

    Article  CAS  PubMed  Google Scholar 

  163. Tolusso, L. K., Hazelton, P., Wong, B. & Swarr, D. T. Beyond diagnostic yield: prenatal exome sequencing results in maternal, neonatal, and familial clinical management changes. Genet. Med. 23, 909–917 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Harding, E., Hammond, J., Chitty, L. S., Hill, M. & Lewis, C. Couples experiences of receiving uncertain results following prenatal microarray or exome sequencing: a mixed‐methods systematic review. Prenat. Diagn. 40, 1028–1039 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data: Olivier Fortin. Drafting the article or revising it critically for important intellectual content: Olivier Fortin, Sarah Mulkey, Jamie Fraser. Final approval of the version to be published: Olivier Fortin, Sarah Mulkey, Jamie Fraser.

Corresponding author

Correspondence to Jamie L. Fraser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortin, O., Mulkey, S.B. & Fraser, J.L. Advancing fetal diagnosis and prognostication using comprehensive prenatal phenotyping and genetic testing. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03343-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03343-9

  • Springer Nature America, Inc.

Navigation