Skip to main content
Log in

NνDEx-100 conceptual design report

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Observing nuclear neutrinoless double beta (0\(\nu \beta \beta\)) decay would be a revolutionary result in particle physics. Observing such a decay would prove that the neutrinos are their own antiparticles, help to study the absolute mass of neutrinos, explore the origin of their mass, and may explain the matter-antimatter asymmetry in our universe by lepton number violation. We propose developing a time projection chamber (TPC) using high-pressure \(^{82}\)SeF\(_6\) gas and Topmetal silicon sensors for readout in the China Jinping Underground Laboratory (CJPL) to search for neutrinoless double beta decay of \(^{82}\)Se, called the N\(\nu\)DEx experiment. Besides being located at CJPL with the world’s thickest rock shielding, N\(\nu\)DEx combines the advantages of the high \(Q_{\beta \beta }\) (2.996 MeV) of \(^{82}\)Se and the TPC’s ability to distinguish signal and background events using their different topological characteristics. This makes N\(\nu\)DEx unique, with great potential for low-background and high-sensitivity 0\(\nu \beta \beta\)  searches. N\(\nu\)DEx-100, a N\(\nu\)DEx experiment phase with 100 kg of SeF\(_6\) gas, is being built, with plans to complete installation at CJPL by 2025. This report introduces 0\(\nu \beta \beta\) physics, the N\(\nu\)DEx concept and its advantages, and the schematic design of N\(\nu\)DEx-100, its subsystems, and background and sensitivity estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.13732, https://doi.org/10.57760/sciencedb.13734, https://cstr.cn/31253.11.sciencedb.13732, and https://cstr.cn/31253.11.sciencedb.13734.

References

  1. R.N. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous parity nonconservation. Phys. Rev. Lett. 44, 912 (1980). https://doi.org/10.1103/PhysRevLett.44.912

    Article  ADS  CAS  Google Scholar 

  2. M. Agostini, G.R. Araujo, A.M. Bakalyarov et al., Final results of GERDA on the search for neutrinoless double-\(\beta\) decay. Phys. Rev. Lett. 125, 252502 (2020). https://doi.org/10.1103/PhysRevLett.125.252502

    Article  ADS  CAS  PubMed  Google Scholar 

  3. C.E. Aalseth,  N. Abgrall, E. Aguayo et al., Search for neutrinoless double-\(\beta\) decay in \(^{76}\)Ge with the Majorana demonstrator. Phys. Rev. Lett. 120, 132502 (2018). https://doi.org/10.1103/PhysRevLett.120.132502

    Article  ADS  CAS  PubMed  Google Scholar 

  4. D.Q. Adams, C. Alduino, K. Alfonso et al., (CUORE), Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE. Nature 604, 53 (2022). https://doi.org/10.1038/s41586-022-04497-4

    Article  CAS  Google Scholar 

  5. C. Augier,  A.S. Barabash, F. Bellini et al., Final results on the \(0\nu \beta \beta\) decay half-life limit of \(^{100}\)Mo from the CUPID-Mo experiment. Eur. Phys. C. 82, 1033 (2022). https://doi.org/10.1140/epjc/s10052-022-10942-5

    Article  ADS  CAS  Google Scholar 

  6. S. Abe, S. Asami, M. Eizuka et al., Search for the Majorana nature of neutrinos in the inverted mass ordering region with KamLAND-Zen. Phys. Rev. Lett. 130, 051801 (2023). https://doi.org/10.1103/PhysRevLett.130.051801

    Article  ADS  CAS  PubMed  Google Scholar 

  7. G. Anton, I. Badhrees, P.S. Barbeau et al., Search for neutrinoless double-\(\beta\) decay with the complete EXO-200 dataset. Phys. Rev. Lett. 123, 161802 (2019). https://doi.org/10.1103/PhysRevLett.123.161802

    Article  ADS  CAS  PubMed  Google Scholar 

  8. L. Wang, Q. Yue, K. Kang et al., First results on \(^{76}\)Ge neutrinoless double beta decay from CDEX-1 experiment. Sci. China Phys. Mech. Astron. 60, 071011 (2017). https://doi.org/10.1007/s11433-017-9038-4

    Article  CAS  Google Scholar 

  9. K.X. Ni, Y.H. Lai, A. Abdukerim et al., Searching for neutrino-less double beta decay of \(^{136}\)Xe with PandaX-II liquid xenon detector. Chin. Phys. C 43, 113001 (2019). https://doi.org/10.1088/1674-1137/43/11/113001

    Article  ADS  CAS  Google Scholar 

  10. M.X. Xue, Y.L. Zhang, H.P. Peng et al., Study of CdMoO\(_4\) crystal for a neutrinoless double beta decay experiment with \(^{116}\)Cd and \(^{100}\)Mo nuclides. Chin. Phys. C 41, 046002 (2017). https://doi.org/10.1088/1674-1137/41/4/046002

    Article  ADS  CAS  Google Scholar 

  11. J. Zhao, L.J. Wen, Y.F. Wang et al., Physics potential of searching for \(0\nu \beta \beta\) decays in JUNO. Chin. Phys. C 41, 053001 (2017). https://doi.org/10.1088/1674-1137/41/5/053001

    Article  ADS  CAS  Google Scholar 

  12. J.J. Gomez-Cadenas, J. Martin-Albo, M. Sorel et al., Sense and sensitivity of double beta decay experiments. JCAP 06, 007 (2011). https://doi.org/10.1088/1475-7516/2011/06/007

    Article  ADS  CAS  Google Scholar 

  13. D.R. Nygren, B.J.P. Jones, N. López-March et al., Neutrinoless double beta decay with \(^{82}\)SeF\(_6\) and direct ion imaging. JINST 13, P03015 (2018). https://doi.org/10.1088/1748-0221/13/03/P03015

    Article  Google Scholar 

  14. C. Gao, M. An, G. Huang et al., A Low-Noise Charge-Sensitive Amplifier for Gainless Charge Readout in High-Pressure Gas TPC. PoS TWEPP2018, 083 (2019). https://doi.org/10.22323/1.343.0083

  15. B. You, L. Xiao, X. Sun et al., A distributed readout network ASIC for high-density electrode array targeting at neutrinoless double-beta decay search in a Time Projection Chamber. Nucl. Instrum. Meth. A 988, 164871 (2021). https://doi.org/10.1016/j.nima.2020.164871

    Article  CAS  Google Scholar 

  16. J. Anderson, K. Bauer, A. Borga et al., FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework. J. Instrum. 11, C12023 (2016). https://doi.org/10.1088/1748-0221/11/12/C12023

    Article  Google Scholar 

  17. K. Chen, H. Chen, J. Huang et al., A generic high bandwidth data acquisition card for physics experiments. IEEE Trans. Instrum. Meas. 69, 4569 (2020). https://doi.org/10.1109/TIM.2019.2947972

    Article  ADS  Google Scholar 

  18. J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270 (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  ADS  Google Scholar 

  19. S. Agostinelli, J. Allison, K. Amako et al., GEANT4-a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  CAS  Google Scholar 

  20. J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geant4. Nucl. Instrum. Meth. A 835, 186 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  ADS  CAS  Google Scholar 

  21. D. Brown, M. Chadwick, R. Capote et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nuclear Data Sheets 148: 1 (2018), https://doi.org/10.1016/j.nds.2018.02.001

  22. H. Ma, Z. She, W.H. Zeng et al., In-situ gamma-ray background measurements for next generation CDEX experiment in the China Jinping Underground Laboratory. Astropart. Phys. 128, 102560 (2021). https://doi.org/10.1016/j.astropartphys.2021.102560

    Article  Google Scholar 

  23. V. Álvarez, F.I.G.M. Borges, S. Cárcel et al., NEXT-100 technical design report (TDR): executive summary. JINST 7, T06001 (2012). https://doi.org/10.1088/1748-0221/7/06/T06001

    Article  ADS  Google Scholar 

  24. T.T. Böhlen, F. Cerutti, M.P.W. Chin et al., The FLUKA code: developments and challenges for high energy and medical applications. Nucl. Data Sheets 120, 211 (2014). https://doi.org/10.1016/j.nds.2014.07.049

    Article  ADS  CAS  Google Scholar 

  25. A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, FLUKA: A multi-particle transport code (Program version 2005). https://doi.org/10.2172/877507

  26. G. Battistoni, T. Boehle, F. Cerutti et al., Overview of the FLUKA code. Ann. Nucl. Energy 82, 10 (2015). https://doi.org/10.1016/j.anucene.2014.11.007

    Article  CAS  Google Scholar 

  27. C. Ahdida, D. Bozzato, D. Calzolari et al., New capabilities of the FLUKA multi-purpose code. Front. Phys. 9, 788253 (2022). https://doi.org/10.3389/fphy.2021.788253

    Article  Google Scholar 

  28. Q. Hu, H. Ma, Z. Zeng et al., Neutron background measurements at China Jinping underground laboratory with a Bonner Multi-sphere Spectrometer. Nucl. Instrum. Meth. A 859, 37 (2017). https://doi.org/10.1016/j.nima.2017.03.048

    Article  ADS  CAS  Google Scholar 

  29. Q. Wang, Z. Huang, P. Hu et al., Neutron Activation Background in the NvDEx Experiment (2023). arXiv:2307.12785 [physics.ins-det]

  30. J. Back, Y. Ramachers, ACTIVIA: calculation of isotope production cross-sections and yields. Nucl. Instrum. Meth. A 586, 286 (2008). https://doi.org/10.1016/j.nima.2007.12.008

    Article  ADS  CAS  Google Scholar 

  31. M. Laubenstein, G. Heusser, Cosmogenic radionuclides in metals as indicator for sea level exposure history. Appl. Radiat. Isot. 67, 750 (2009). https://doi.org/10.1016/j.apradiso.2009.01.029

    Article  CAS  PubMed  Google Scholar 

  32. Z.Y.  Guo, L. Bathe-Peters, S.M. Chen et al., Muon flux measurement at China Jinping Underground Laboratory. Chin. Phys. C 45, 025001 (2021). https://doi.org/10.1088/1674-1137/abccae

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors contributed to the study conception and design. Material preparation and data collection and analysis were performed by all authors. The first draft of the manuscript was written by C-SG, KC, C-GL, QH, PY, Y-LC, EC, SG, D-LF, and HQ. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hao Qiu.

Ethics declarations

Conflict of interest

Nu Xu is an editorial board member and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

This work was supported by the National Key Research and Development Program of China (Nos. 2021YFA1601300 and 2022YFA1604703), From-0-to-1 Original Innovation Program of Chinese Academy of Sciences (No. ZDBS-LY-SLH014), International Partner Program of Chinese Academy of Sciences (No. GJHZ2067), and National Natural Science Foundation of China Youth Science Fund Project (No. 12105110).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, XG., Chang, YL., Chen, K. et al. NνDEx-100 conceptual design report. NUCL SCI TECH 35, 3 (2024). https://doi.org/10.1007/s41365-023-01360-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01360-7

Keywords

Navigation