Skip to main content
Log in

Surface metallization of PTFE and PTFE composites by ion implantation for low-background electronic substrates in rare-event detection experiments

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Polytetrafluoroethylene (PTFE) is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments. PTFE-based electronic substrates are important for reducing the detection limit of high-purity germanium detectors and scintillator calorimeters, which are widely applied in dark matter and 0υββ detection experiments. The traditional adhesive bonding method between PTFE and copper is not conducive to working in liquid nitrogen and extremely low-temperature environments. To avoid adhesive bonding, PTFE must be processed for surface metallization owing to the mismatch between the PTFE and copper conductive layer. Low-background PTFE matrix composites (m-PTFE) were selected to improve the electrical and mechanical properties of PTFE by introducing SiO2/TiO2 particles. The microstructures, surface elements, and electrical properties of PTFE and m-PTFE were characterized and analyzed following ion implantation. PTFE and m-PTFE surfaces were found to be broken, degraded, and cross-linked by ion implantation, resulting in C=C conjugated double bonds, increased surface energy, and increased surface roughness. Comparably, the surface roughness, bond strength, and conjugated double bonds of m-PTFE were significantly more intense than those of PTFE. Moreover, the interface bonding theory between PTFE and the metal copper foil was analyzed using the direct metallization principle. Therefore, the peel strength of the optimized electronic substrates was higher than that of the industrial standard at extremely low temperatures, while maintaining excellent electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Bandac, S. Borjabad, A. Ianni et al., Ultra-low background and environmental measurements at Laboratorio Subterráneo de Canfranc (LSC). Appl. Radiat. Isot. 126, 127–129 (2017). https://doi.org/10.1016/j.apradiso.2017.02.046

    Article  Google Scholar 

  2. Y.L. Yan, W.X. Zhong, S.T. Lin et al., Study on cosmogenic radioactive production in germanium as a background for future rare-event search experiments. Nucl. Sci. Tech. 31, 55 (2020). https://doi.org/10.1007/s41365-020-00762-1

    Article  Google Scholar 

  3. S.S. Lv, Y.Y. Liu, W.Y. Tang et al., Evaluation of the passivation effect and the first-principles calculation on surface termination of germanium detector. Nucl. Sci. Tech. 32, 93 (2021). https://doi.org/10.1007/s41365-021-00930-x

    Article  Google Scholar 

  4. Y. Wang, Y.Y. Liu, B. Wu et al., Experimental investigation on the radiation background inside body counters. Nucl. Sci. Tech. 33, 20 (2022). https://doi.org/10.1007/s41365-022-01004-2

    Article  Google Scholar 

  5. K.L. Giboni, P. Juyal, E. Aprile et al., A LN2-based cooling system for a next-generation liquid xenon dark matter detector. Nucl. Sci. Tech. 31, 76 (2020). https://doi.org/10.1007/s41365-020-00786-7

    Article  Google Scholar 

  6. N. Abgrall, I.J. Arnquist, F.T. Avignone et al., The Majorana Demonstrator radioassay program. Nucl. Instrum. Methods Phys. A 828, 22–36 (2016). https://doi.org/10.1016/j.nima.2016.04.070

    Article  ADS  Google Scholar 

  7. Ph. Camus, A. Cazes, A. Dastgheibi-Fard et al., CUTE: a low background facility for testing cryogenic dark matter detectors. J. Low Temp. Phys. 193, 813–818 (2018). https://doi.org/10.1007/s10909-018-2014-0

    Article  ADS  Google Scholar 

  8. K.H. Ackermann, M. Agostini, M. Allardt et al., The GERDA experiment for the search of 0υββ decay in 76Ge. Eur. Phys. J. C 73, 2330 (2013). https://doi.org/10.1140/epjc/s10052-013-2330-0

    Article  ADS  Google Scholar 

  9. H. Ma, Y. Chen, Q. Yue et al., CDEX dark matter experiment: Status and prospects. J. Phys. Conf. Ser. 1342, 012067 (2020). https://doi.org/10.1088/1742-6596/1342/1/012067

    Article  Google Scholar 

  10. P. Barton, P. Luke, M. Amman et al., Low-noise low-mass front end electronics for low-background physics experiments using germanium detectors, in IEEE Nuclear Science Symposium Conference 1976–1979 (2011). https://doi.org/10.1109/NSSMIC.2011.6154397

  11. W.H. Zeng, H. Ma, M. Zeng et al., Evaluation of cosmogenic activation of copper and germanium during production in Jinping Underground Laboratory. Nucl. Sci. Tech. 31, 50 (2020). https://doi.org/10.1007/s41365-020-00760-3

    Article  Google Scholar 

  12. H.Y. Du, C.B. Du, K. Giboni et al., Screener3D: a gaseous time projection chamber for ultra-low radioactive material screening. Nucl. Sci. Tech. 32, 142 (2021). https://doi.org/10.1007/s41365-021-00983-y

    Article  Google Scholar 

  13. GERDA Collaboration, M. Agostini, A.M. Bakalyarov, M. Balata et al., Upgrade for phase II of the GERDA experiment. Eur. Phys. J. C 78, 388 (2018). https://doi.org/10.1140/epjc/s10052-018-5812-2

    Article  ADS  Google Scholar 

  14. G. Primc, Recent advances in surface activation of polytetrafluoroethylene (PTFE) by gaseous plasma treatments. Polymers (Basel) 12, 2295 (2020). https://doi.org/10.3390/polym12102295

    Article  Google Scholar 

  15. Y. Fan, S. Li, X. Tao et al., Negative triboelectric polymers with ultrahigh charge density induced by ion implantation. Nano Energy 90, 106574 (2021). https://doi.org/10.1016/j.nanoen.2021.106574

    Article  Google Scholar 

  16. I.V. Vasenina, K.P. Savkin, O.A. Laput et al., Effects of ion- and electron-beam treatment on surface physicochemical properties of polytetrafluoroethylene. Surf. Coat. Technol. 334, 134–141 (2018). https://doi.org/10.1016/j.surfcoat.2017.11.035

    Article  Google Scholar 

  17. K. Kotra-Konicka, J. Kalbarczyk, J.M. Gac, Modification of polypropylene membranes by ion implantation. Chem, Process Eng. 37, 331–339 (2016). https://doi.org/10.1515/cpe-2016-0027

    Article  Google Scholar 

  18. M. Lv, F. Zheng, Q.H. Wang et al., Surface structural changes, surface energy and antiwear properties of polytetrafluoroethylene induced by proton irradiation. Mater. Des. 85, 162–168 (2015). https://doi.org/10.1016/j.matdes.2015.06.155

    Article  Google Scholar 

  19. P. Sommani, H. Tsuji, H. Kojima et al., Irradiation effect of carbon negative-ion implantation on polytetrafluoroethylene for controlling cell-adhesion property. Nucl. Instrum. Methods Phys. Res. B 268, 3231–3234 (2010). https://doi.org/10.1016/j.nimb.2010.05.096

    Article  ADS  Google Scholar 

  20. D.L. Pugmire, C.J. Wetteland, W.S. Duncan et al., Cross-linking of polytetrafluoroethylene during room-temperature irradiation. Polym. Degrad. Stab. 94, 1533–1541 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.04.024

    Article  Google Scholar 

  21. M. Manso, A. Valsesia, M. Lejeune et al., Tailoring surface properties of biomedical polymers by implantation of Ar and He ions. Acta Biomater. 1, 431–440 (2005). https://doi.org/10.1016/j.actbio.2005.03.003

    Article  Google Scholar 

  22. G. Peng, H. Geng, D. Yang et al., An analysis on changes in structure, tensile properties of polytetrafluoroethylene film induced by protons. Radiat. Phys. Chem. 69, 163–169 (2004). https://doi.org/10.1016/S0969-806X(03)00440-7

    Article  ADS  Google Scholar 

  23. S.W. Lee, J.W. Hong, M.Y. Wye et al., Surface modification and adhesion improvement of PTFE film by ion beam irradiation. Nucl. Instrum. Methods Phys. Res. B 219–220, 963–967 (2004). https://doi.org/10.1016/j.nimb.2004.01.197

    Article  ADS  Google Scholar 

  24. J.M. Colwell, E. Wentrup-Byrne, J.M. Bell et al., A study of the chemical and physical effects of ion implantation of micro-porous and nonporous PTFE. Surf. Coat. Technol. 168, 216–222 (2003). https://doi.org/10.1016/S0257-8972(03)00204-4

    Article  Google Scholar 

  25. J. Zhang, X. Yu, H. Li et al., Surface modification of polytetrafluoroethylene by nitrogen ion implantation. Appl. Surf. Sci. 185, 255–261 (2002). https://doi.org/10.1016/S0169-4332(01)00824-8

    Article  ADS  Google Scholar 

  26. G. Mesyats, Yu. Klyachkin, N. Gavrilov et al., Adhesion of polytetrafluorethylene modified by an ion beam. Vacuum 52, 285–289 (1999). https://doi.org/10.1016/S0042-207X(98)00300-5

    Article  ADS  Google Scholar 

  27. E.H. Lee, M.B. Lewis, P.J. Blau et al., Improved surface properties of polymer materials by multiple ion beam treatment. J. Mater. Res. 6, 610–628 (1991). https://doi.org/10.1557/JMR.1991.0610

    Article  ADS  Google Scholar 

  28. H. Eal, Lee, Ion-beam modification of polymeric materials—fundamental principles and applications. Nucl. Instrum. Methods Phys. Res. B 151, 29–41 (1999). https://doi.org/10.1016/S0168-583X(99)00129-9

    Article  Google Scholar 

  29. S. Li, Y. Fan, H. Chen et al., Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy Environ. Sci. 13, 896–907 (2020). https://doi.org/10.1039/C9EE03307F

    Article  Google Scholar 

  30. N. Zettsu, H. Itoh, K. Yamamura, Surface functionalization of PTFE sheet through atmospheric pressure plasma liquid deposition approach. Surf. Coat. Technol. 202, 5284–5288 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.006

    Article  Google Scholar 

  31. L. Guzman, B.Y. Man, A. Miotello et al., Ion beam induced enhanced adhesion of Au films deposited on polytetrafluoroethylene. Thin Solid Films 420–421, 565–570 (2002). https://doi.org/10.1016/S0040-6090(02)00839-8

    Article  Google Scholar 

  32. U. Lappan, U. Geißler, U. Scheler, Chemical structures formed in electron beam irradiated poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP). Macromol. Mater. Eng. 291, 937–943 (2006). https://doi.org/10.1002/mame.200600143

    Article  Google Scholar 

  33. J.J. Bikerman, Causes of poor adhesion: boundary layers. Ind. Eng. Chem. 59, 40–44 (1967). https://doi.org/10.1021/ie51403a010

    Article  Google Scholar 

  34. H. Schonhorn, R.H. Hansen, Surface treatment of polymers for adhesive bonding. J. Appl. Polym. Sci. 11, 1461–1474 (1967). https://doi.org/10.1002/app.1967.070110809

    Article  Google Scholar 

  35. D.M. Brewis, I. Mathieson, I. Sutherland et al., Adhesion studies of fluoropolymers. J. Adhes. 41, 113–128 (1993). https://doi.org/10.1080/00218469308026557

    Article  Google Scholar 

  36. Y.-C. Chen, H.-C. Lin, Y.-D. Lee, The effects of filler content and size on the properties of PTFE/SiO2 composites. J. Polym. Res. 10, 247–258 (2003). https://doi.org/10.1023/B:JPOL.0000004620.71900.16

    Article  Google Scholar 

  37. Y. Liu, J. Cheng, P. Pang et al., Developing cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX. Chin. Phys. B 29, 045203 (2020). https://doi.org/10.1088/1674-1056/ab718a

    Article  ADS  Google Scholar 

  38. M.B. Lewis, E.H. Lee, Residual gas and ion-beam analysis of ion-irradiated polymers. Nucl. Instrum. Methods Phys. Res. B 61, 457–465 (1991). https://doi.org/10.1016/0168-583X(91)95323-6

    Article  ADS  Google Scholar 

  39. S.P. Firsov, G.R. Zhbankov, M. Bakhramov et al., Raman spectra and structure of polytetrafluoroethylene subjected to elastic deformation grinding. J. Appl. Spectrosc. 59, 644–647 (1993). https://doi.org/10.1007/BF00661793

    Article  ADS  Google Scholar 

  40. J.L. Koenig, F.J. Boerio, Raman scattering and band assignments in polytetraftuoroethylene. J. Chem. Phys. 50, 2823–2829 (1969). https://doi.org/10.1063/1.1671470

    Article  ADS  Google Scholar 

  41. D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747 (1969). https://doi.org/10.1002/app.1969.070130815

    Article  Google Scholar 

  42. S.-L. Sagit, M. Abraham, Validity and accuracy in evaluating surface tension of solids by additive approaches. J. Colloid Interface Sci. 262, 489–499 (2003). https://doi.org/10.1016/S0021-9797(02)00231-X

    Article  ADS  Google Scholar 

  43. R.K. Fu, Y.F. Mei, G.J. Wan et al., Surface composition and surface energy of Teflon treated by metal plasma immersion ion implantation. Surf. Sci. 573, 426–432 (2004). https://doi.org/10.1016/j.susc.2004.10.007

    Article  ADS  Google Scholar 

  44. S. Liu, C. Fu, A. Gu et al., Structural changes of polytetrafluoroethylene during irradiation in oxygen. Radiat. Phys. Chem. 109, 1–5 (2015). https://doi.org/10.1016/j.radphyschem.2014.12.005

    Article  ADS  Google Scholar 

  45. Y. Ohkubo, M. Shibahara, A. Nagatani et al., Comparison between adhesion properties of adhesive bonding and adhesive-free adhesion for heat-assisted plasma-treated polytetrafluoroethylene (PTFE). J. Adhes. 96, 776–796 (2020). https://doi.org/10.1080/00218464.2018.1512859

    Article  Google Scholar 

Download references

Acknowledgements

In addition, the authors are thankful for the valuable suggestions provided by the open fund of the Key Laboratory of Particle Technology and Radiation Imaging (Ministry of Education) at Tsinghua University, members of the China Dark Matter EXperiment Cooperation Group.

Author information

Authors and Affiliations

Authors

Contributions

The authors of Yuan-Yuan Liu, Sha-Sha Lv, Jian-Ping Cheng and Bin Liao contributed to low-background polymers screening, the conception and design of the study. The experiment was performed and analyzed by Shao-Jun Zhang and Pan Pang. Dielectric properties analyses were performed by Zhi Deng and Li He. The original draft of the manuscript was written by Shao-Jun Zhang, and all the authors have reviewed and commented on the manuscript.

Corresponding authors

Correspondence to Yuan-Yuan Liu or Sha-Sha Lv.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12141502 and 12005017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SJ., Liu, YY., Lv, SS. et al. Surface metallization of PTFE and PTFE composites by ion implantation for low-background electronic substrates in rare-event detection experiments. NUCL SCI TECH 33, 90 (2022). https://doi.org/10.1007/s41365-022-01068-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01068-0

Keywords

Navigation