Skip to main content
Log in

Role of lncRNAs in Remodeling of the Coronary Artery Plaques in Patients with Atherosclerosis

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Introduction

Cardiovascular diseases (CVDs) are the leading cause of death worldwide according to World Health Organization (WHO) data. Atherosclerosis is considered as a chronic inflammatory disease that develops in response to damage to the vascular intima-media layer in most cases. In recent years, epigenetic events have emerged as important players in the development and progression of CVDs. Since noncoding RNA (ncRNAs) are important regulators in the organization of the pathophysiological processes of the cardiovascular system, they have the potential to be used as therapeutic targets, diagnostic and prognostic biomarkers. In this study long noncoding RNA (lncRNA) and mRNA gene expression were compared between coronary atherosclerotic plaques (CAP) and the internal mammary artery (IMA)  which has the same genetic makeup and is exposed to the same environmental stress conditions with CAP in the same individual.

Methods

lncRNA and mRNA gene expressions were determined using the microarray in the samples. Microarray results were validated by RT-qPCR. Differentially expressed genes (DEGs; lncRNAs and mRNAs) were determined by GeneSpring (Ver 3.0) [p values < 0.05 and fold change (FC) > 2]. DAVID bioinformatics program was used for Gene Ontology (GO) annotation and enrichment analyses of statistically significant genes between CAP and IMA tissue.

Results and Conclusions

In our study, 345 DEGs were found to be statistically significant (p < 0.05; FC > 2) between CAP and IMA. Of these, 65 were lncRNA and 280 were mRNA. Thirty-three lncRNAs were upregulated, while 32 lncRNAs were downregulated. Some of the important mRNAs are SPP1, CYP4B1, CHRDL1, MYOC, and ALKAL2, while some of the lncRNAs are LOC105377123, LINC01857, DIO3OS, LOC101928134, and KCNA3 between CAP and IMA tissue. We also identified genes that correlated with statistically significant lncRNAs. The results of this study are expected to be an important source of data in the development of new genetically based drugs to prevent atherosclerotic plaque. In addition, the data obtained may contribute to the explanation of the epigenetic mechanisms that play a role in the pathological basis of the process that protects the IMA from atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-Fernandez R, Burns R, Rayner M, Townsend N. European heart network. Brussels: European Society of Cardiology, Sophia Antipolis; 2017.

    Google Scholar 

  2. Medicine IO. Promoting cardiovascular health in the developing world: a critical challenge to achieve global health. Washington, DC: The National Academies Press; 2010.

    Google Scholar 

  3. Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol. 2015;65(8):846–55.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mizuno Y, Jacob RF, Mason RP. Inflammation and the development of atherosclerosis. J Atheroscler Thromb. 2011;18(5):351–8.

    Article  CAS  PubMed  Google Scholar 

  5. Kraler S, Libby P, Evans PC, Akhmedov A, Schmiady MO, Reinehr M, Lüscher TF. Resilience of the internal mammary artery to atherogenesis: shifting from risk to resistance to address unmet needs. Arteriosc Thromb Vasc Biol. 2021;41(8):2237–51.

    Article  CAS  Google Scholar 

  6. Robinson EK, Covarrubias S, Carpenter S. The how and why of lncRNA function: An innate immune perspective. Biochim Biophys Acta Gene Regul Mech. 2020;1863: 194419.

    Article  CAS  PubMed  Google Scholar 

  7. Singh D, Rai V, Agrawal DK. Non-coding RNAs in regulating plaque progression and remodeling of extracellular matrix in atherosclerosis. Int J Mol Sci. 2022;23(22):13731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arslan S, Berkan Ö, Lalem T, Özbilüm N, Göksel S, Korkmaz Ö, Devaux Y. Long non-coding RNAs in the atherosclerotic plaque. Atherosclerosis. 2017;266:176–81.

    Article  CAS  PubMed  Google Scholar 

  9. Hu YW, Guo FX, Xu YJ, Li P, Lu ZF, McVey DG, Zheng L, Wang Q, Ye JH, Kang CM, Wu SG, Zhao JJ, Ma X, Yang Z, Fang FC, Qiu YR, Xu BM, Xiao L, Wu Q, Wu LM, Ding L, Webb TR, Samani NJ, Ye S. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129(3):1115–28.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Berkan Ö, Arslan S, Lalem T, Zhang L, Şahin NÖ, Aydemir EI, Korkmaz Ö, Eğilmez HR, Çekin N, Devaux Y. Regulation of microRNAs in coronary atherosclerotic plaque. Epigenomics. 2019;11(12):1387–97. https://doi.org/10.2217/epi-2019-0036.

    Article  CAS  PubMed  Google Scholar 

  11. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524–33.

    Article  CAS  PubMed  Google Scholar 

  12. Khyzha N, Alizada A, Wilson MD, Fish JE. Epigenetics of atherosclerosis: emerging mechanisms and methods. Trends Mol Med. 2017;23(4):332–47.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Meng X, Zhu XW, Yang DC, Chen R, Jiang Y, Xu T. Long non-coding RNAs in oral squamous cell carcinoma: biologic function, mechanisms and clinical implications. Mol Cancer. 2019;18(1):1–19.

    Article  Google Scholar 

  14. Simion V, Zhou H, Pierce JB, Yang D, Haemmig S, Tesmenitsky Y, Feinberg MW. LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling. JCI insight. 2020. https://doi.org/10.1172/jci.insight.140627.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res. 2019;124(2):315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bai HL, Lu ZF, Zhao JJ, Ma X, Li XH, Xu H, Hu YW. Microarray profiling analysis and validation of novel long noncoding RNAs and mRNAs as potential biomarkers and their functions in atherosclerosis. Physiol Genom. 2019;51(12):644–56.

    Article  CAS  Google Scholar 

  17. Marcos-Jubilar M, Orbe J, Roncal C, Machado FJ, Rodriguez JA, Fernández-Montero A, Páramo JA. Association of SDF1 and MMP12 with atherosclerosis and ınflammation: clinical and experimental study. Life. 2021;11(5):414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beton O, Arslan S, Acar B, Ozbilum N, Berkan O. Association between MMP-3 and MMP-9 polymorphisms and coronary artery disease. Biomed Rep. 2016;5(6):709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Owens AP, Mackman N. Role of tissue factor in atherothrombosis. Curr Atheroscler Rep. 2012;14:394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang S, Liu Y, Cao Y, Zhang S, Sun J, Wang Y, Zhang H. Targeting the microenvironment of vulnerable atherosclerotic plaques: an emerging diagnosis and therapy strategy for atherosclerosis. Adv Mater. 2022;34(29):2110660.

    Article  CAS  Google Scholar 

  22. Cobbaert CM, Althaus H, BegcevicBrkovic I, Ceglarek U, Coassin S, Delatour V, IFCC Working Group for Standardization of Apolipoproteins by Mass Spectrometry. Towards an SI-traceable reference measurement system for seven serum apolipoproteins using bottom-up quantitative proteomics: conceptual approach enabled by cross-disciplinary/cross-sector collaboration. Clin Chem. 2021;67(3):478–89.

    Article  PubMed  Google Scholar 

  23. Zhang J, Wei J, Wang Y, Xu J, Jin J. Identification and validation of TREM2 in intracranial aneurysms. Genet Test Mol Biomark. 2021;25(10):646–53.

    Article  CAS  Google Scholar 

  24. Khan AW, Lee MSK, Watson AM, Maxwell S, Cooper ME, Murphy A, Jandeleit-Dahm KA. Role of FOS transcription factor in diabetes associated atherosclerosis; insight from single cell RNA sequencing. Atherosclerosis. 2021;331:e69–70.

    Article  Google Scholar 

  25. Wang G, Abadía-Molina AC, Berger SB, Romero X, O'Keeffe M, Rojas-Barros DI, Terhorst C. Slamf8 is a negative regulator of Nox2 activity in macrophages. J Immunol (Baltim Md: 1950). 2012;188(12): 5829.

  26. Medina CB, Mehrotra P, Arandjelovic S, Perry JS, Guo Y, Morioka S, Ravichandran KS. Metabolites released from apoptotic cells act as tissue messengers. Nature. 2020;580(7801):130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee CQ, Kerouanton B, Chothani S, Zhang S, Chen Y, Mantri CK, Ho L. Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity. Nat Commun. 2021;12(1):1–22.

    Google Scholar 

  28. Kwon YC, Kim JJ, Yu JJ, Yun SW, Yoon KL, Lee KY, Lee JK. Identification of the TIFAB gene as a susceptibility locus for coronary artery aneurysm in patients with Kawasaki disease. Pediatr Cardiol. 2019;40(3):483–8.

    Article  PubMed  Google Scholar 

  29. Natarajan P, Pampana A, Graham SE, et al. Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices. Nat Commun. 2021;12:2182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi Y, Jeon H, Akin JW, Curry TE Jr, Jo M. The FOS/AP-1 regulates metabolic changes and cholesterol synthesis in human periovulatory granulosa cells. Endocrinology. 2021;162(9):127.

    Article  Google Scholar 

  31. Schmidt C, Wiedmann F, Kallenberger SM, Ratte A, Schulte JS, Scholz B, Thomas D. Stretch-activated two-pore-domain (K2P) potassium channels in the heart: Focus on atrial fibrillation and heart failure. Prog Biophys Mol Biol. 2017;130:233–43.

    Article  CAS  PubMed  Google Scholar 

  32. Elbitar S, Renard M, Arnaud P, Hanna N, Jacob MP, Guo DC, Abifadel M. Pathogenic variants in THSD4, encoding the ADAMTS-like 6 protein, predispose to inherited thoracic aortic aneurysm. Genet Med. 2021;23(1):111–22.

    Article  CAS  PubMed  Google Scholar 

  33. Wu F, Wu S, Tong H, He W, Gou X. HOXA6 inhibits cell proliferation and induces apoptosis by suppressing the PI3K/Akt signaling pathway in clear cell renal cell carcinoma. Int J Oncol. 2019;54(6):2095–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ress C, Paulweber M, Goebel G, Willeit K, Rufinatscha K, Strobl A, Salzmann K, Kedenko L, Tschoner A, Staudacher G, Iglseder B, Tilg H, Paulweber B, Kaser S. Circulating Wnt inhibitory factor 1 levels are associated with development of cardiovascular disease. Atherosclerosis. 2018;273:1–7.

    Article  CAS  PubMed  Google Scholar 

  35. Li Q, Li B, Lu CL, Wang JY, Gao M, Gao W. LncRNA LINC01857 promotes cell growth and diminishes apoptosis via PI3K/mTOR pathway and EMT process by regulating miR-141-3p/MAP4K4 axis in diffuse large B-cell lymphoma. Cancer Gene Ther. 2021;28(9):1046–57.

    Article  CAS  PubMed  Google Scholar 

  36. Shi LE, Shang X, Nie KC, Lin ZQ, Wang M, Huang YY, Zhu ZZ. Identification of hub genes correlated with the pathogenesis and prognosis in Pancreatic adenocarcinoma on bioinformatics methods. Biomarkers. 2020;10:2.

    Google Scholar 

  37. Chen B, Xu X, Lin DD, Chen X, Xu YT, Liu X, Dong WG. KRT18 modulates alternative splicing of genes involved in proliferation and apoptosis processes in both gastric cancer cells and clinical samples. Front Genet. 2021. https://doi.org/10.3389/fgene.2021.635429.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cui H, Jiang Z, Zeng S, Wu H, Zhang Z, Guo X, Li L. A new candidate oncogenic lncRNA derived from pseudogene WFDC21P promotes tumor progression in gastric cancer. Cell Death Dis. 2021;12(10):1–12.

    Article  CAS  Google Scholar 

  39. Tayefeh-Gholami S, Ghanbari M, Aghazadeh A, Rajabi A, Saber A, Hussen BM, Safaralizadeh R. Prognostic value of lncRNA KRT18P55 in patients with intestinal type of gastric cancer. J Gastroint Cancer. 2021;1–6

  40. Wang Y, Wang J, Wang C, Chen Y, Chen J. DIO3OS as a potential biomarker of papillary thyroid cancer. Pathol Res Pract. 2022;229: 153695.

    Article  CAS  PubMed  Google Scholar 

  41. Nehme A, Kobeissy F, Zhao J, Zhu R, Feugier P, Mechref Y, Zibara K. Functional pathways associated with human carotid atheroma: a proteomics analysis. Hypertens Res. 2019;42(3):362–73.

    Article  PubMed  Google Scholar 

  42. Boucher P, Matz RL, Terrand J. Atherosclerosis: gone with the Wnt? Atherosclerosis. 2020;301:15–22.

    Article  CAS  PubMed  Google Scholar 

  43. Weerackoon N, Gunawardhana KL, Mani A. Wnt signaling cascades and their role in coronary artery health and disease. J Cell Signal. 2021;2:52–62.

    PubMed  PubMed Central  Google Scholar 

  44. Zhu Y, Liao H, Wang N, Ma KS, Verna LK, Shyy JY, Chien S, Stemerman MB. LDL-activated p38 in endothelial cells is mediated by Ras. Arterioscler Thromb Vasc Biol. 2001;21:1159–211.

    Article  CAS  PubMed  Google Scholar 

  45. McMullen ME, Bryant PW, Glembotski CC, Vincent PA, Pumiglia KM. Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. J Biol Chem. 2005;280:20995–1003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Serdal Arslan or Furkan Ayaz.

Ethics declarations

Funding

This study was funded by the Scientific Research and Technological Research Council of Turkey (TUBITAK) (project no:218S524).

Conflict of Interest

Serdal Arslan, Nil Özbilüm Şahin, Burcu Bayyurt, Öcal Berkan, Mehmet Birhan Yılmaz, Mehmet Aşam, and Furkan Ayaz declare that they have no conflicts of interest that might be relevant to the contents of this manuscript."

Ethics Approval

In our study, we performed microarray analysis on 32 samples that consisted of 16 IMA and 16 CAP tissue samples taken from Sivas Cumhuriyet University Research Hospital Cardiovascular Surgery Department. The patients had bypass surgery, and the samples were taken from their IMA and CAP tissues on the basis of the ethical permissions (Sivas Cumhuriyet University Clinical Research Ethics Committee decision number: 2018-09/150 and 2018–04/18). The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Written informed consent form was obtained from all volunteers.

Consent (Participation and Publication)

Not applicable.

Author Contri̇buti̇ons

S.A., N.Ö.Ş., and B.B. performed experiments; S.A., N.Ö.Ş., B.B., and F.A. prepared figures; S.A., N.Ö.Ş., B.B., F.A., and M.B.Y. edited and revised manuscript; S.A., N.Ö.Ş., B.B., and F.A. drafted manuscript; S.A., N.Ö.Ş., and B.B. analyzed data; S.A., M.B.Y., and Ö.B. conceived and designed research; M.B.Y., Ö.B., and M.A. performed sample collection and analyzed demographic and clinical parameters.

Code Availability

Not applicable.

Data Availability Statement

Data is available upon reasonable request from the corresponding authors.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, S., Şahin, N.Ö., Bayyurt, B. et al. Role of lncRNAs in Remodeling of the Coronary Artery Plaques in Patients with Atherosclerosis. Mol Diagn Ther 27, 601–610 (2023). https://doi.org/10.1007/s40291-023-00659-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-023-00659-w

Navigation