Skip to main content
Log in

Drugs in Human Milk Part 1: Practical and Analytical Considerations in Measuring Drugs and Metabolites in Human Milk

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Human milk is a remarkable biofluid that provides essential nutrients and immune protection to newborns. Breastfeeding women consuming medications could pass the drug through their milk to neonates. Drugs can be transferred to human milk by passive diffusion or active transport. The physicochemical properties of the drug largely impact the extent of drug transfer into human milk. A comprehensive understanding of the physiology of human milk formation, composition of milk, mechanisms of drug transfer, and factors influencing drug transfer into human milk is critical for appropriate selection and use of medications in lactating women. Quantification of drugs in the milk is essential for assessing the safety of pharmacotherapy during lactation. This can be achieved by developing specific, sensitive, and reproducible analytical methods using techniques such as liquid chromatography coupled with mass spectrometry. The present review briefly discusses the physiology of human milk formation, composition of human milk, mechanisms of drug transfer into human milk, and factors influencing transfer of drugs from blood to milk. We further expand upon and critically evaluate the existing analytical approaches/assays used for the quantification of drugs in human milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ayad M, Costantine MM. Epidemiology of medications use in pregnancy. Semin Perinatol. 2015;39(7):508–11.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Saha MR, Ryan K, Amir LH. Postpartum women’s use of medicines and breastfeeding practices: a systematic review. Int Breastfeed J. 2015;10:28.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ito S, Lee A. Drug excretion into breast milk–overview. Adv Drug Deliv Rev. 2003;55(5):617–27.

    Article  CAS  PubMed  Google Scholar 

  4. Friguls B, Joya X, Garcia-Algar O, et al. A comprehensive review of assay methods to determine drugs in breast milk and the safety of breastfeeding when taking drugs. Anal Bioanal Chem. 2010;397(3):1157–79.

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, Johnson T, Sahin L, et al. Evaluation of the safety of drugs and biological products used during lactation: workshop summary. Clin Pharmacol Ther. 2017;101(6):736–44.

    Article  CAS  PubMed  Google Scholar 

  6. Shapiro RL, Holland DT, Capparelli E, et al. Antiretroviral concentrations in breast-feeding infants of women in Botswana receiving antiretroviral treatment. J Infect Dis. 2005;192(5):720–7.

    Article  CAS  PubMed  Google Scholar 

  7. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin N Am. 2013;60(1):49–74.

    Article  Google Scholar 

  8. van Sadelhoff JHJ, Mastorakou D, Weenen H, et al. Short communication: differences in levels of free amino acids and total protein in human foremilk and hindmilk. Nutrients. 2018;10(12):1828.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lopes BR, Barreiro JC, Cass QB. Bioanalytical challenge: a review of environmental and pharmaceuticals contaminants in human milk. J Pharm Biomed. 2016;25(130):318–25.

    Article  Google Scholar 

  10. Hassiotou F, Geddes D. Anatomy of the human mammary gland: current status of knowledge. Clin Anat. 2013;26(1):29–48.

    Article  PubMed  Google Scholar 

  11. McManaman JL, Neville MC. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55(5):629–41.

    Article  CAS  PubMed  Google Scholar 

  12. Pang WW, Hartmann PE. Initiation of human lactation: secretory differentiation and secretory activation. J Mammary Gland Biol Neoplasia. 2007;12(4):211–21.

    Article  PubMed  Google Scholar 

  13. Quezada A, Vafai K. Modeling and analysis of transport in the mammary glands. Phys Biol. 2014;11(4): 045004.

    Article  PubMed  Google Scholar 

  14. Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol. 2012;1(4):533–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fleishaker JC. Models and methods for predicting drug transfer into human milk. Adv Drug Deliv Rev. 2003;55(5):643–52.

    Article  CAS  PubMed  Google Scholar 

  16. Godhia ML, Patel N. Colostrum-its composition, benefits as a nutraceutical - a review. Curr Res Nutr Food Sci. 2013;1(1):37–47.

    Article  Google Scholar 

  17. Kim SY, Yi DY. Components of human breast milk: from macronutrient to microbiome and microRNA. Clin Exp Pediatr. 2020;63(8):301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andreas NJ, Kampmann B, Mehring L-D. Human breast milk: a review on its composition and bioactivity. Early Hum Dev. 2015;91(11):629–35.

    Article  CAS  PubMed  Google Scholar 

  19. Stowe ZN, Hostetter AL, Owens MJ, et al. The pharmacokinetics of sertraline excretion into human breast milk: determinants of infant serum concentrations. J Clin Psychiatry. 2003;64(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  20. García-Lino AM, Álvarez-Fernández I, Blanco-Paniagua E, et al. Transporters in the mammary gland-contribution to presence of nutrients and drugs into milk. Nutrients. 2019;11(10):2372.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Atkinson HC, Begg EJ. Prediction of drug distribution into human milk from physicochemical characteristics. Clin Pharmacokinet. 1990;18(2):151–67.

    Article  CAS  PubMed  Google Scholar 

  22. JTW. Drugs in Breast Milk, 2nd ed. In: ADIS; 1981.

  23. Ito S, Alcorn J. Xenobiotic transporter expression and function in the human mammary gland. Adv Drug Deliv Rev. 2003;55(5):653–65.

    Article  CAS  PubMed  Google Scholar 

  24. Hodel EM, Marzolini C, Waitt C, et al. Pharmacokinetics, placental and breast milk transfer of antiretroviral drugs in pregnant and lactating women living with HIV. Curr Pharm Des. 2019;25(5):556–76.

    Article  CAS  PubMed  Google Scholar 

  25. Gao B, Vavricka SR, Meier PJ, et al. Differential cellular expression of organic anion transporting peptides OATP1A2 and OATP2B1 in the human retina and brain: implications for carrier-mediated transport of neuropeptides and neurosteriods in the CNS. Pflugers Arch. 2015;467(7):1481–93.

    Article  CAS  PubMed  Google Scholar 

  26. Seaton S, Reeves M, McLean S. Oxycodone as a component of multimodal analgesia for lactating mothers after Caesarean section: relationships between maternal plasma, breast milk and neonatal plasma levels. Aus NZJ Obstet Gynaecol. 2007;47(3):181–5.

    Article  Google Scholar 

  27. Malfara BN, Benzi JRL, de Oliveira Filgueira GC, et al. ABCG2 c.421C>A polymorphism alters nifedipine transport to breast milk in hypertensive breastfeeding women. Reprod Toxicol. 2019;85:1–5.

    Article  CAS  PubMed  Google Scholar 

  28. Jonker JW, Merino G, Musters S, et al. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med. 2005;11(2):127–9.

    Article  CAS  PubMed  Google Scholar 

  29. Banta-Wright SA. Minimizing infant exposure to and risks from medications while breastfeeding. J Perinat Neonatal Nurs. 1997;11(2):71–84 (quiz 85-6).

    Article  CAS  PubMed  Google Scholar 

  30. Breitzka RL, Sandritter TL, Hatzopoulos FK. Principles of drug transfer into breast milk and drug disposition in the nursing infant. J Hum Lact. 1997;13(2):155–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26.

    Article  CAS  PubMed  Google Scholar 

  32. Development. NIoCHaH. Drugs and Lactation Database (LactMed(R)). 2021. https://www.ncbi.nlm.nih.gov/books/NBK501922/. Accessed 1 Dec 2023.

  33. Rivera-calimlim L. Drugs in breast milk. Drug Ther (NY). 1977;7(12):59–63.

    CAS  PubMed  Google Scholar 

  34. Özdemir Z, Traş B. Behaviours of drugs in the milk - a review. Vet Sci Prac. 2018;13(3):364–72.

    Google Scholar 

  35. Sisodia CS, Stowe CM. The mechanism of drug secretion into bovine milk. Ann NY Acad Sci. 1964;24(111):650–61.

    Article  Google Scholar 

  36. Wilson JT, Brown RD, Cherek DR, et al. Drug excretion in human breast milk: principles, pharmacokinetics and projected consequences. Clin Pharmacokinet. 1980;5(1):1–66.

    Article  CAS  PubMed  Google Scholar 

  37. Syversen GB, Ratkje SK. Drug distribution within human milk phases. J Pharm Sci. 1985;74(10):1071–4.

    Article  CAS  PubMed  Google Scholar 

  38. Smith JA, Morgan JR, Rachlis AR, et al. Clindamycin in human breast milk. Can Med Assoc J. 1975;112(7):806.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cahill JB Jr, Bailey EM, Chien S, et al. Levofloxacin secretion in breast milk: a case report. Pharmacotherapy. 2005;25(1):116–8.

    Article  PubMed  Google Scholar 

  40. Khurana R, Bin Jardan YA, Wilkie J, et al. Breast milk concentrations of amiodarone, desethylamiodarone, and bisoprolol following short-term drug exposure: two case reports. J Clin Pharmacol. 2014;54(7):828–31.

    Article  CAS  PubMed  Google Scholar 

  41. Lutz UC, Wiatr G, Orlikowsky T, et al. Olanzapine treatment during breast feeding: a case report. Ther Drug Monit. 2008;30(3):399–401.

    Article  PubMed  Google Scholar 

  42. Rowe HE, Felkins K, Cooper SD, et al. Transfer of linezolid into breast milk. J Hum Lact. 2014;30(4):410–2.

    Article  PubMed  Google Scholar 

  43. Teoh S, Ilett KF, Hackett LP, et al. Estimation of rac-amisulpride transfer into milk and of infant dose via milk during its use in a lactating woman with bipolar disorder and schizophrenia. Breastfeed Med. 2011;6(2):85–8.

    Article  PubMed  Google Scholar 

  44. Hill RC, McIvor RJ, Wojnar-Horton RE, et al. Risperidone distribution and excretion into human milk: case report and estimated infant exposure during breast-feeding. J Clin Psychopharmacol. 2000;20(2):285–6.

    Article  CAS  PubMed  Google Scholar 

  45. Molad M, Ashkenazi L, Gover A, et al. Melatonin stability in human milk. Breastfeed Med. 2019;14(9):680–2.

    Article  PubMed  Google Scholar 

  46. Peakman T, Elliott P. Current standards for the storage of human samples in biobanks. Genome Med. 2010;2(10):72.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Collecting, storing, accessing, and protecting biospecimens and biodata. In: Robert M. Hauser MW, Robert Pool, and Barney Cohen, editor. Conducting Biosocial Surveys. Washington DC: National Academic Press; 2010. p. 19-40.

  48. Rodríguez-Gómez R, Dorival-García N, Zafra-Gómez A, et al. New method for the determination of parabens and bisphenol A in human milk samples using ultrasound-assisted extraction and clean-up with dispersive sorbents prior to UHPLC-MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;15(992):47–55.

    Article  Google Scholar 

  49. McCarthy JJ, Posey BL. Methadone levels in human milk. J Hum Lact. 2000;16(2):115–20.

    Article  CAS  PubMed  Google Scholar 

  50. Alvim J Jr, Lopes BR, Cass QB. Simultaneous enantioselective quantification of fluoxetine and norfluoxetine in human milk by direct sample injection using 2-dimensional liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2016;17(1451):120–6.

    Article  Google Scholar 

  51. Lopes BR, Barreiro JC, Baraldi PT, et al. Quantification of carbamazepine and its active metabolite by direct injection of human milk serum using liquid chromatography tandem ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;15(889–890):17–23.

    Article  Google Scholar 

  52. El-Gindy A, Nassar M, Attia K, et al. High-performance liquid chromatographic determination of ethamsylate in human breast milk. J Liq Chromatogr Relat. 2013;36:1915–30.

    Article  CAS  Google Scholar 

  53. El-Gindy A, Sallam S, Abdel-Salam RA. HPLC method for the simultaneous determination of atenolol and chlorthalidone in human breast milk. J Sep Sci. 2008;31(4):677–82.

    Article  CAS  PubMed  Google Scholar 

  54. Hadad GM, Abdel Salam RA, Emara S. Validated and optimized high-performance liquid chromatographic determination of tizoxanide, the main active metabolite of nitazoxanide in human urine, plasma and breast milk. J Chromatogr Sci. 2012;50(6):509–15.

    Article  CAS  PubMed  Google Scholar 

  55. Rezk NL, Abdel-Megeed MF, Kashuba AD. Development of a highly efficient extraction technique and specific multiplex assay for measuring antiretroviral drug concentrations in breast milk. Ther Drug Monit. 2007;29(4):429–36.

    Article  CAS  PubMed  Google Scholar 

  56. Manohar M, Marzinke MA. Validation and implementation of an ultrasensitive liquid chromatographic-tandem mass spectrometric (LC-MS/MS) assay for dapivirine quantitation in breast milk. Clin Biochem. 2020;82:66–72.

    Article  CAS  PubMed  Google Scholar 

  57. Palombi L, Pirillo MF, Andreotti M, et al. Antiretroviral prophylaxis for breastfeeding transmission in Malawi: drug concentrations, virological efficacy and safety. Antivir Ther. 2012;17(8):1511–9.

    Article  CAS  PubMed  Google Scholar 

  58. Ramirez-Ramirez A, Sanchez-Serrano E, Loaiza-Flores G, et al. Simultaneous quantification of four antiretroviral drugs in breast milk samples from HIV-positive women by an ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. PLoS ONE. 2018;13(1): e0191236.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rezk NL, White N, Bridges AS, et al. Studies on antiretroviral drug concentrations in breast milk: validation of a liquid chromatography-tandem mass spectrometric method for the determination of 7 anti-human immunodeficiency virus medications. Ther Drug Monit. 2008;30(5):611–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bartu A, Dusci LJ, Ilett KF. Transfer of methylamphetamine and amphetamine into breast milk following recreational use of methylamphetamine. Br J Clin Pharmacol. 2009;67(4):455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rigourd V, de Villepin B, Amirouche A, et al. Ibuprofen concentrations in human mature milk–first data about pharmacokinetics study in breast milk with AOR-10127 “Antalait” study. Ther Drug Monit. 2014;36(5):590–6.

    Article  CAS  PubMed  Google Scholar 

  62. Wei B, McGuffey JE, Blount BC, et al. Sensitive Quantification of cannabinoids in milk by alkaline saponification-solid phase extraction combined with isotope dilution UPLC-MS/MS. ACS Omega. 2016;1(6):1307–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ramnarine RS, Poklis JL, Wolf CE. Determination of cannabinoids in breast milk using QuEChERS and ultra-performance liquid chromatography and tandem mass spectrometry. J Anal Toxicol. 2019;43(9):746–52.

    Article  CAS  PubMed  Google Scholar 

  64. van Leeuwen SS. Challenges and pitfalls in human milk oligosaccharide analysis. Nutrients. 2019;11(11):2684.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Robinson RC, Colet E, Tian T, et al. An improved method for the purification of milk oligosaccharides by graphitised carbon-solid phase extraction. Int Dairy J. 2018;80:62–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dodd S, Stocky A, Buist A, et al. Sertraline in paired blood plasma and breast-milk samples from nursing mothers. Hum Psychopharmacol. 2000;15(4):161–264.

    Article  PubMed  Google Scholar 

  67. Newport DJ, Pennell PB, Calamaras MR, et al. Lamotrigine in breast milk and nursing infants: determination of exposure. Pediatrics. 2008;122(1):e223–31.

    Article  PubMed  Google Scholar 

  68. Purkiewicz A, Pietrzak-Fiecko R, Sorgel F, et al. Caffeine, paraxanthine, theophylline, and theobromine content in human milk. Nutrients. 2022;14(11):2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ilett KF, Kristensen JH, Hackett LP, et al. Distribution of venlafaxine and its O-desmethyl metabolite in human milk and their effects in breastfed infants. Br J Clin Pharmacol. 2002;53(1):17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kristensen JH, Ilett KF, Rampono J, et al. Transfer of the antidepressant mirtazapine into breast milk. Br J Clin Pharmacol. 2007;63(3):322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kociszewska-Najman B, Mazanowska N, Borek-Dzieciol B, et al. Low content of cyclosporine A and its metabolites in the colostrum of post-transplant mothers. Nutrients. 2020;12(9):2713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kociszewska-Najman B, Mazanowska N, Pietrzak B, et al. Low transfer of tacrolimus and its metabolites into colostrum of graft recipient mothers. Nutrients. 2018;10(3):267.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wan EW, Davey K, Page-Sharp M, et al. Dose-effect study of domperidone as a galactagogue in preterm mothers with insufficient milk supply, and its transfer into milk. Br J Clin Pharmacol. 2008;66(2):283–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Begg EJ, Malpas TJ, Hackett LP, et al. Distribution of R- and S-methadone into human milk during multiple, medium to high oral dosing. Br J Clin Pharmacol. 2001;52(6):681–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Page-Sharp M, Hale TW, Hackett LP, et al. Measurement of nicotine and cotinine in human milk by high-performance liquid chromatography with ultraviolet absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;796(1):173–80.

    Article  CAS  PubMed  Google Scholar 

  76. Amundsen S, Nordeng H, Fuskevag OM, et al. Transfer of triptans into human breast milk and estimation of infant drug exposure through breastfeeding. Basic Clin Pharmacol Toxicol. 2021;128(6):795–804.

    Article  CAS  PubMed  Google Scholar 

  77. Benaboud S, Pruvost A, Coffie PA, et al. Concentrations of tenofovir and emtricitabine in breast milk of HIV-1-infected women in Abidjan, Cote d’Ivoire, in the ANRS 12109 TEmAA Study, Step 2. Antimicrob Agents Chemother. 2011;55(3):1315–7.

    Article  CAS  PubMed  Google Scholar 

  78. Schneider S, Peltier A, Gras A, et al. Efavirenz in human breast milk, mothers’, and newborns’ plasma. J Acquir Immune Defic Syndr. 2008;48(4):450–4.

    Article  CAS  PubMed  Google Scholar 

  79. Croke S, Buist A, Hackett LP, et al. Olanzapine excretion in human breast milk: estimation of infant exposure. Int J Neuropsychopharmacol. 2002;5(3):243–7.

    Article  CAS  PubMed  Google Scholar 

  80. Pellegrini M, Marchei E, Rossi S, et al. Liquid chromatography/electrospray ionization tandem mass spectrometry assay for determination of nicotine and metabolites, caffeine and arecoline in breast milk. Rapid Commun Mass Spectrom. 2007;21(16):2693–703.

    Article  CAS  PubMed  Google Scholar 

  81. Grimm D, Pauly E, Poschl J, et al. Buprenorphine and norbuprenorphine concentrations in human breast milk samples determined by liquid chromatography-tandem mass spectrometry. Ther Drug Monit. 2005;27(4):526–30.

    Article  CAS  PubMed  Google Scholar 

  82. Hostetter AL, Stowe ZN, Cox M, et al. A novel system for the determination of antidepressant concentrations in human breast milk. Ther Drug Monit. 2004;26(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  83. Ilett KF, Paech MJ, Page-Sharp M, et al. Use of a sparse sampling study design to assess transfer of tramadol and its O-desmethyl metabolite into transitional breast milk. Br J Clin Pharmacol. 2008;65(5):661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Law I, Ilett KF, Hackett LP, et al. Transfer of chloroquine and desethylchloroquine across the placenta and into milk in Melanesian mothers. Br J Clin Pharmacol. 2008;65(5):674–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Misri S, Kim J, Riggs KW, et al. Paroxetine levels in postpartum depressed women, breast milk, and infant serum. J Clin Psychiatry. 2000;61(11):828–32.

    Article  CAS  PubMed  Google Scholar 

  86. Franssen EJ, Meijs V, Ettaher F, et al. Citalopram serum and milk levels in mother and infant during lactation. Ther Drug Monit. 2006;28(1):2–4.

    Article  CAS  PubMed  Google Scholar 

  87. Jacqz-Aigrain E, Serreau R, Boissinot C, et al. Excretion of ketoprofen and nalbuphine in human milk during treatment of maternal pain after delivery. Ther Drug Monit. 2007;29(6):815–8.

    Article  CAS  PubMed  Google Scholar 

  88. Kristensen JH, Hackett LP, Kohan R, et al. The amount of fluvoxamine in milk is unlikely to be a cause of adverse effects in breastfed infants. J Hum Lact. 2002;18(2):139–43.

    Article  PubMed  Google Scholar 

  89. Rampono J, Hackett LP, Kristensen JH, et al. Transfer of escitalopram and its metabolite demethylescitalopram into breastmilk. Br J Clin Pharmacol. 2006;62(3):316–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rampono J, Kristensen JH, Hackett LP, et al. Citalopram and demethylcitalopram in human milk; distribution, excretion and effects in breast fed infants. Br J Clin Pharmacol. 2000;50(3):263–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Taghizadeh M, Ebrahimi M, Fooladi E, et al. Preconcentration and determination of five antidepressants from human milk and urine samples by stir bar filled magnetic ionic liquids using liquid-liquid-liquid microextraction-high-performance liquid chromatography. J Sep Sci. 2022;45(8):1434–44.

    Article  CAS  PubMed  Google Scholar 

  92. Ahmad Panahi H, Ejlali M, Chabouk M. Two-phase and three-phase liquid-phase microextraction of hydrochlorothiazide and triamterene in urine samples. Biomed Chromatogr. 2016;30(7):1022–8.

    Article  CAS  PubMed  Google Scholar 

  93. Li GZ, Row KH. Recent applications of molecularly imprinted polymers (MIPs) on micro-extraction techniques. Sep Purif Rev. 2018;47(1):1–18.

    Article  Google Scholar 

  94. Kul A, Sagirli O. Determination of cefuroxime in breast milk by LC-MS/MS using SALLME technique. Biomed Chromatogr. 2023;12: e5744.

    Article  Google Scholar 

  95. Kiriazopoulos E, Zaharaki S, Vonaparti A, et al. Quantification of three beta-lactam antibiotics in breast milk and human plasma by hydrophilic interaction liquid chromatography/positive-ion electrospray ionization mass spectrometry. Drug Test Anal. 2017;9(7):1062–72.

    Article  CAS  PubMed  Google Scholar 

  96. Kole PL, Venkatesh G, Kotecha J, et al. Recent advances in sample preparation techniques for effective bioanalytical methods. Biomed Chromatogr. 2011;25(1–2):199–217.

    Article  CAS  PubMed  Google Scholar 

  97. Lindemalm S, Nydert P, Svensson JO, et al. Transfer of buprenorphine into breast milk and calculation of infant drug dose. J Hum Lact. 2009;25(2):199–205.

    Article  PubMed  Google Scholar 

  98. Lemmer P, Schneider S, Muhe A, et al. Quantification of lorazepam and lormetazepam in human breast milk using GC-MS in the negative chemical ionization mode. J Anal Toxicol. 2007;31(4):224–6.

    Article  CAS  PubMed  Google Scholar 

  99. Gjerde J, Kjellevold M, Dahl L, et al. Validation and determination of 25(OH) vitamin D and 3-Epi25(OH)D3 in breastmilk and maternal- and infant plasma during breastfeeding. Nutrients. 2020;12(8):2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Karunanithi D, Radhakrishna A, Sivaraman KP, et al. Quantitative determination of melatonin in milk by LC-MS/MS. J Food Sci Technol. 2014;51(4):805–12.

    Article  CAS  PubMed  Google Scholar 

  101. Marchei E, Escuder D, Pallas CR, et al. Simultaneous analysis of frequently used licit and illicit psychoactive drugs in breast milk by liquid chromatography tandem mass spectrometry. J Pharm Biomed. 2011;55(2):309–16.

    Article  CAS  Google Scholar 

  102. Nitsun M, Szokol JW, Saleh HJ, et al. Pharmacokinetics of midazolam, propofol, and fentanyl transfer to human breast milk. Clin Pharmacol Ther. 2006;79(6):549–57.

    Article  CAS  PubMed  Google Scholar 

  103. Haas JS, Kaplan CP, Barenboim D, et al. Bupropion in breast milk: an exposure assessment for potential treatment to prevent post-partum tobacco use. Tob Control. 2004;13(1):52–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Winecker RE, Goldberger BA, Tebbett IR, et al. Detection of cocaine and its metabolites in breast milk. J Forensic Sci. 2001;46(5):1221–3.

    Article  CAS  PubMed  Google Scholar 

  105. Aresta A, Palmisano F, Zambonin CG. Simultaneous determination of caffeine, theobromine, theophylline, paraxanthine and nicotine in human milk by liquid chromatography with diode array UV detection. Food Chem. 2005;93(1):177–81.

    Article  CAS  Google Scholar 

  106. Swortwood MJ, Scheidweiler KB, Barnes AJ, et al. Simultaneous quantification of buprenorphine, naloxone and phase I and II metabolites in plasma and breastmilk by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2016;13(1446):70–7.

    Article  Google Scholar 

  107. Polson C, Sarkar P, Incledon B, et al. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;785(2):263–75.

    Article  CAS  PubMed  Google Scholar 

  108. Weisskopf E, Panchaud A, Nguyen KA, et al. Simultaneous determination of selective serotonin reuptake inhibitors and their main metabolites in human breast milk by liquid chromatography-electrospray mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1(1057):101–9.

    Article  Google Scholar 

  109. Shahane A, Zhao W, Pakalapati N, et al. Simultaneous quantitation of ketamine, norketamine and dehydronorketamine in human milk using a novel ultra high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) assay. J Pharm Biomed. 2023;1(234): 115502.

    Article  Google Scholar 

  110. Dei Cas M, Casagni E, Gambaro V, et al. Determination of daptomycin in human plasma and breast milk by UPLC/MS-MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;15(1116):38–43.

    Article  Google Scholar 

  111. Jin W, Gui J, Li G, et al. High-throughput quantitation of trace level melatonin in human milk by on-line enrichment liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2021;1(1176): 338764.

    Article  Google Scholar 

  112. Lwin EMP, Gerber C, Song Y, et al. A new LC-MS/MS bioanalytical method for perindopril and perindoprilat in human plasma and milk. Anal Bioanal Chem. 2017;409(26):6141–8.

    Article  CAS  PubMed  Google Scholar 

  113. Lwin EMP, Leggett C, Ritchie U, et al. Transfer of rosuvastatin into breast milk: liquid chromatography-mass spectrometry methodology and clinical recommendations. Drug Des Dev Ther. 2018;12:3645–51.

    Article  CAS  Google Scholar 

  114. Nikolaou P, Papoutsis I, Athanaselis S, et al. Development and validation of a method for the determination of buprenorphine and norbuprenorphine in breast milk by gas chromatography-mass spectrometry. Biomed Chromatogr. 2012;26(3):358–62.

    Article  CAS  PubMed  Google Scholar 

  115. Nikolaou PD, Papoutsis II, Maravelias CP, et al. Development and validation of an EI-GC-MS method for the determination of methadone and its major metabolites (EDDP and EMDP) in human breast milk. J Anal Toxicol. 2008;32(7):478–84.

    Article  CAS  PubMed  Google Scholar 

  116. Salazar FR, D’Avila FB, de Oliveira MH, et al. Development and validation of a bioanalytical method for five antidepressants in human milk by LC-MS. J Pharm Biomed. 2016;10(129):502–8.

    Article  Google Scholar 

  117. Waitt C, Diliiy Penchala S, Olagunju A, et al. Development, validation and clinical application of a method for the simultaneous quantification of lamivudine, emtricitabine and tenofovir in dried blood and dried breast milk spots using LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;15(1060):300–7.

    Article  Google Scholar 

  118. Wegler C, Saleh A, Lindqvist A, et al. Simple and rapid quantification of cetirizine, venlafaxine, and O-desmethylvenlafaxine in human breast milk, and metformin in human milk and plasma with UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2022;1(1205): 123340.

    Article  Google Scholar 

  119. Zhang M, Moore GA, Lever M, et al. Rapid and simple high-performance liquid chromatographic assay for the determination of metformin in human plasma and breast milk. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;766(1):175–9.

    Article  CAS  PubMed  Google Scholar 

  120. Wollein U, Schech B, Hardt J, et al. Determination and quantitation of sildenafil and its major metabolite in the breast milk of a lactating woman. J Pharm Biomed. 2016;20(120):100–5.

    Article  Google Scholar 

  121. Furugen A, Nishimura A, Umazume T, et al. Simple and validated method to quantify lacosamide in human breast milk and plasma using UPLC/MS/MS and its application to estimate drug transfer into breast milk. J Pharm Health Care Sci. 2023;9(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Choo RE, Jansson LM, Scheidweiler K, et al. A validated liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometric method for the quantification of methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), and 2-Ethyl-5-methyl-3,3-diphenylpyroline (EMDP) in human breast milk. J Anal Toxicol. 2007;31(5):265–9.

    Article  CAS  PubMed  Google Scholar 

  123. Mkhize B, Kellermann T, Norman J, et al. Validation and application of a quantitative liquid chromatography tandem mass spectrometry assay for the analysis of rifapentine and 25-O-desacetyl rifapentine in human milk. J Pharm Biomed. 2022;5(215): 114774.

    Article  Google Scholar 

  124. Sempio C, Wymore E, Palmer C, et al. Detection of cannabinoids by LC-MS-MS and ELISA in breast milk. J Anal Toxicol. 2021;45(7):686–92.

    Article  CAS  PubMed  Google Scholar 

  125. Yeniceli D, Dogrukol-Ak D, Tuncel M. A Validated HPLC Method with fluorescence detection for the determination of droperidol in pharmaceutical tablets, human serum, and human milk. Chromatographia. 2007;66:S37–43.

    Article  CAS  Google Scholar 

  126. Fraissinet F, Oumar AA, Seraissol P, et al. Method validation and clinical application for the quantification of lopinavir, efavirenz, and ritonavir in breast milk using liquid chromatography tandem mass spectrometry. J Mass Spectrom. 2022;57(12): e4897.

    Article  CAS  PubMed  Google Scholar 

  127. Zuma P, Joubert A, van der Merwe M, et al. Validation and application of a quantitative LC-MS/MS assay for the analysis of first-line anti-tuberculosis drugs, rifabutin and their metabolites in human breast milk. J Chromatogr B Analyt Technol Biomed Life Sci. 2022;15(1211): 123489.

    Article  Google Scholar 

  128. Monfort A, Jutras M, Martin B, et al. Simultaneous quantification of 19 analytes in breast milk by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Pharm Biomed. 2021;10(204): 114236.

    Article  Google Scholar 

  129. Marson ME, Padro JM, Reta MR, et al. A simple and efficient HPLC method for benznidazole dosage in human breast milk. Ther Drug Monit. 2013;35(4):522–6.

    Article  CAS  PubMed  Google Scholar 

  130. Markopoulou CK, Koundourellis JE. Development of a validated liquid chromatography method for the simultaneous determination of ethinyl estradiol, cyproterone acetate, and norgestrel in breast milk following solid-phase extraction. J Liq Chromatog. 2006;29:685–700.

    Article  CAS  Google Scholar 

  131. Lopes BR, Cassiano NM, Carvalho DM, et al. Simultaneous quantification of fluoxetine and norfluoxetine in colostrum and mature human milk using a 2-dimensional liquid chromatography-tandem mass spectrometry system. J Pharm Biomed. 2018;20(150):362–7.

    Article  Google Scholar 

  132. Wolfson P, Cole R, Lynch K, et al. The pharmacokinetics of ketamine in the breast milk of lactating women: quantification of ketamine and metabolites. J Psychoactive Drugs. 2022;26:1–5.

    Google Scholar 

  133. Ansermot N, Brawand-Amey M, Eap CB. Simultaneous quantification of selective serotonin reuptake inhibitors and metabolites in human plasma by liquid chromatography-electrospray mass spectrometry for therapeutic drug monitoring. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;15(885–886):117–30.

    Article  Google Scholar 

  134. Tiris G, Gazioglu I, Furton KG, et al. Fabric phase sorptive extraction combined with high performance liquid chromatography for the determination of favipiravir in human plasma and breast milk. J Pharm Biomed. 2023;20(223): 115131.

    Article  Google Scholar 

  135. Kabir A, Samanidou V. Fabric phase sorptive extraction: a paradigm shift approach in analytical and bioanalytical sample preparation. Molecules. 2021;26(4):865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Leon-Gonzalez ME, Rosales-Conrado N. Determination of ibuprofen enantiomers in breast milk using vortex-assisted matrix solid-phase dispersion and direct chiral liquid chromatography. J Chromatogr A. 2017;8(1514):88–94.

    Article  Google Scholar 

  137. Olagunju A, Amara A, Waitt C, et al. Validation and clinical application of a method to quantify nevirapine in dried blood spots and dried breast-milk spots. J Antimicrob Chemother. 2015;70(10):2816–22.

    Article  CAS  PubMed  Google Scholar 

  138. Olagunju A, Bolaji OO, Amara A, et al. Development, validation and clinical application of a novel method for the quantification of efavirenz in dried breast milk spots using LC-MS/MS. J Antimicrob Chemother. 2015;70(2):555–61.

    Article  CAS  PubMed  Google Scholar 

  139. Eyal S, Kim JD, Anderson GD, et al. Atenolol pharmacokinetics and excretion in breast milk during the first 6 to 8 months postpartum. J Clin Pharmacol. 2010;50(11):1301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hebert MF, Carr DB, Anderson GD, et al. Pharmacokinetics and pharmacodynamics of atenolol during pregnancy and postpartum. J Clin Pharmacol. 2005;45(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  141. Sagirli O, Demirci S, Onal A. A very simple high-performance liquid chromatographic method with fluorescence detection for the determination of gemifloxacin in human breast milk. Luminescence. 2015;30(8):1326–9.

    Article  CAS  PubMed  Google Scholar 

  142. Kim J, Riggs KW, Misri S, et al. Stereoselective disposition of fluoxetine and norfluoxetine during pregnancy and breast-feeding. Br J Clin Pharmacol. 2006;61(2):155–63.

    Article  CAS  PubMed  Google Scholar 

  143. Phyo Lwin EM, Gerber C, Song Y, et al. A new LC-MS/MS bioanalytical method for atenolol in human plasma and milk. Bioanalysis. 2017;9(7):517–30.

    Article  PubMed  Google Scholar 

  144. Mirochnick M, Thomas T, Capparelli E, et al. Antiretroviral concentrations in breast-feeding infants of mothers receiving highly active antiretroviral therapy. Antimicrob Agents Chemother. 2009;53(3):1170–6.

    Article  CAS  PubMed  Google Scholar 

  145. US Department of Health and Human Services. Food and Drug Administration. Bioanalytical method validation guidance for industry. 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf. Accessed 1 Dec 2023.

  146. European Medicines Agency. guideline on bioanalytical method validation. 2015. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf. Accessed 1 Dec 2023.

  147. Bunch DR, El-Khoury JM, Gabler J, et al. Do deuterium labeled internal standards correct for matrix effects in LC-MS/MS assays? A case study using plasma free metanephrine and normetanephrine. Clin Chim Acta. 2014;15(429):4–5.

    Article  Google Scholar 

  148. Lindegardh N, Annerberg A, White NJ, et al. Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperaquine in plasma stable isotope labeled internal standard does not always compensate for matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;862(1–2):227–36.

    Article  CAS  PubMed  Google Scholar 

  149. Begg EJ, Duffull SB, Hackett LP, et al. Studying drugs in human milk: time to unify the approach. J Hum Lact. 2002;18(4):323–32.

    Article  PubMed  Google Scholar 

  150. Salman S, Davis TM, Page-Sharp M, et al. Pharmacokinetics of transfer of azithromycin into the breast milk of african mothers. Antimicrob Agents Chemother. 2015;60(3):1592–9.

    Article  PubMed  Google Scholar 

  151. Damoiseaux D, Centanni D, Beijnen JH, et al. Predicting chemotherapy distribution into breast milk for breastfeeding women using a population pharmacokinetic approach. Clin Pharmacokinet. 2023;62(7):969–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Van Neste M, Bogaerts A, Nauwelaerts N, et al. Challenges related to acquisition of physiological data for physiologically based pharmacokinetic (PBPK) models in postpartum, lactating women and breastfed infants-a contribution from the ConcePTION project. Pharmaceutics. 2023;15(11):2618.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Giamarellou H, Kolokythas E, Petrikkos G, et al. Pharmacokinetics of three newer quinolones in pregnant and lactating women. Am J Med. 1989;87(5a):49s–51s.

    Article  CAS  PubMed  Google Scholar 

  154. Burra B, Datta P, Rewers-Felkins K, et al. Transfer of cyclobenzaprine into human milk and subsequent infant exposure. J Hum Lact. 2019;35(3):559–62.

    Article  PubMed  Google Scholar 

  155. Morganti G, Ceccarelli G, Ciaffi G. Comparative concentrations of a tetracycline antibiotic in serum and maternal milk. Antibiotica. 1968;6(3):216–23.

    CAS  PubMed  Google Scholar 

  156. Weissman AM, Levy BT, Hartz AJ, et al. Pooled analysis of antidepressant levels in lactating mothers, breast milk, and nursing infants. Am J Psychiatry. 2004;161(6):1066–78.

    Article  PubMed  Google Scholar 

  157. Lopes Perdigao J, Lewey J, Hirshberg A, et al. Furosemide for accelerated recovery of blood pressure postpartum in women with a hypertensive disorder of pregnancy: a randomized controlled trial. Hypertension. 2021;77(5):1517–24.

    Article  CAS  PubMed  Google Scholar 

  158. Kristensen JH, Ilett KF, Hackett LP, et al. Gabapentin and breastfeeding: a case report. J Hum Lact. 2006;22(4):426–8.

    Article  PubMed  Google Scholar 

  159. Ostensen M, Brown ND, Chiang PK, et al. Hydroxychloroquine in human breast milk. Eur J Clin Pharmacol. 1985;28(3):357.

    Article  CAS  PubMed  Google Scholar 

  160. Ware RE, Marahatta A, Ware JL, et al. Hydroxyurea exposure in lactation: a pharmacokinetics study (HELPS). J Pediatr. 2020;222:236–9.

    Article  CAS  PubMed  Google Scholar 

  161. Lunell NO, Kulas J, Rane A. Transfer of labetalol into amniotic fluid and breast milk in lactating women. Eur J Clin Pharmacol. 1985;28(5):597–9.

    Article  CAS  PubMed  Google Scholar 

  162. Hale TW, Kristensen JH, Hackett LP, et al. Transfer of metformin into human milk. Diabetologia. 2002;45(11):1509–14.

    Article  CAS  PubMed  Google Scholar 

  163. Spigset O, Brede WR, Zahlsen K. Excretion of methylphenidate in breast milk. Am J Psychiatry. 2007;164(2):348.

    Article  PubMed  Google Scholar 

  164. Job KM, Dallmann A, Parry S, et al. Development of a generic physiologically-based pharmacokinetic model for lactation and prediction of maternal and infant exposure to ondansetron via breast milk. Clin Pharmacol Ther. 2022;111(5):1111–20.

    Article  CAS  PubMed  Google Scholar 

  165. Wojnar-Horton RE, Hackett LP, Yapp P, et al. Distribution and excretion of sumatriptan in human milk. Br J Clin Pharmacol. 1996;41(3):217–21.

    Article  CAS  PubMed  Google Scholar 

  166. Saito J, Ishii M, Mito A, et al. Trazodone levels in maternal serum, cord blood, breast milk, and neonatal serum. Breastfeed Med. 2021;16(11):922–5.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ohman I, Vitols S, Luef G, et al. Topiramate kinetics during delivery, lactation, and in the neonate: preliminary observations. Epilepsia. 2002;43(10):1157–60.

    Article  PubMed  Google Scholar 

  168. Gilad O, Merlob P, Stahl B, et al. Outcome following tranexamic acid exposure during breastfeeding. Breastfeed Med. 2014;9(8):407–10.

    Article  PubMed  Google Scholar 

  169. Inoue H, Unno N, Ou MC, et al. Level of verapamil in human milk. Eur J Clin Pharmacol. 1984;26(5):657–8.

    Article  CAS  PubMed  Google Scholar 

  170. Verapamil. Drugs and Lactation Database (LactMed®). Bethesda (MD): National Institute of Child Health and Human Development; 2006.

  171. Andersen HJ. Excretion of verapamil in human milk. Eur J Clin Pharmacol. 1983;25(2):279–80.

    Article  CAS  PubMed  Google Scholar 

  172. Miller MR, Withers R, Bhamra R, et al. Verapamil and breast-feeding. Eur J Clin Pharmacol. 1986;30(1):125–6.

    Article  CAS  PubMed  Google Scholar 

  173. Ilett KF, Hackett LP, Kristensen JH, et al. Transfer of dexamphetamine into breast milk during treatment for attention deficit hyperactivity disorder. Br J Clin Pharmacol. 2007;63(3):371–5.

    Article  CAS  PubMed  Google Scholar 

  174. Padro JM, Pellegrino Vidal RB, Echevarria RN, et al. Development of an ionic-liquid-based dispersive liquid-liquid microextraction method for the determination of antichagasic drugs in human breast milk: optimization by central composite design. J Sep Sci. 2015;38(9):1591–600.

    Article  CAS  PubMed  Google Scholar 

  175. Baka NE, Bayoumeu F, Boutroy MJ, et al. Colostrum morphine concentrations during postcesarean intravenous patient-controlled analgesia. Anesth Analg. 2002;94(1):184–7.

    Article  CAS  PubMed  Google Scholar 

  176. Leggett C, Lwin EMP, Ritchie U, et al. Perindopril in Breast milk and determination of breastfed infant exposure: a prospective observational study. Drug Des Devel Ther. 2020;14:961–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mugwanya KK, Hendrix CW, Mugo NR, et al. Pre-exposure prophylaxis use by breastfeeding HIV-uninfected women: a prospective short-term study of antiretroviral excretion in breast milk and infant absorption. PLoS Med. 2016;13(9): e1002132.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Stowe ZN, Cohen LS, Hostetter A, et al. Paroxetine in human breast milk and nursing infants. Am J Psychiatry. 2000;157(2):185–9.

    Article  CAS  PubMed  Google Scholar 

  179. Hendrick V, Stowe ZN, Altshuler LL, et al. Fluoxetine and norfluoxetine concentrations in nursing infants and breast milk. Biol Psychiatry. 2001;50(10):775–82.

    Article  CAS  PubMed  Google Scholar 

  180. Shapiro RL, Rossi S, Ogwu A, et al. Therapeutic levels of lopinavir in late pregnancy and abacavir passage into breast milk in the Mma Bana Study, Botswana. Antivir Ther. 2013;18(4):585–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Imam H. Shaik or Raman Venkataramanan.

Ethics declarations

Funding

This work is partially funded by grants from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD, Grant no. HD047905 and Grant no. HD096796).

Conflict of Interest

Osama Y. Alshogran, Prerna Dodeja, Hamdan Albukhaytan, Taylor Laffey, Nupur Chaphekar, Steve Caritis, Imam H. Shaik, and Raman Venkataramanan declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed for the current manuscript.

Authors' Contributions

O.A., P.D., H.A., I.S., and R.V. participated in conceptualization; O.A., P.D., H.A., T.L., and I.S. conducted experiments/ data mining; O.A., P.D., and H.A. performed data analysis; O.A., P.D., H.A., N.K., and I.S. prepared figures and tables; and O.A., P.D., H.A., T.L., S.C., I.S., and R.V. wrote/contributed to the manuscript. All authors read and approved the final version of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshogran, O.Y., Dodeja, P., Albukhaytan, H. et al. Drugs in Human Milk Part 1: Practical and Analytical Considerations in Measuring Drugs and Metabolites in Human Milk. Clin Pharmacokinet 63, 561–588 (2024). https://doi.org/10.1007/s40262-024-01374-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-024-01374-3

Navigation