Skip to main content
Log in

Dynamical properties of nonlinear dust ion-acoustic waves on the basis of the Schamel–KdV equation

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this present study, our objective is to investigate the formation of dust ion-acoustic solitary and periodic waves in a superthermal magnetised plasma featuring both positive and negative charged ions, energetic trapped electrons, and oppositely charged dust particles. We have used the reductive perturbation technique (RPT) to get the Schamel–Korteweg-de Vries (Schamel–KdV) equation, which describes the behaviour of dust ion-acoustic solitary waves (DIASWs). Based on the theory of planar dynamical systems, the possible existing solution of the Schamel–KdV equation is shown in the phase portrait diagram. Sagdeev’s pseudopotential equation is also derived and the features of DIASWs are analysed in combination with the soliton solution. Through the graphical presentation, we have analysed the role of the physical parameters on the characteristics of solitonic and periodic waves, along with the electric field. This investigation has the potential to elucidate the formation of nonlinear waves in diverse astrophysical settings (e.g., ionosphere, solar wind, mesosphere, auroral zone, magnetosphere, etc.) and also laboratory devices that contain opposite-polarity dust-charged particles, superthermally trapped electrons, and both positive and negative ion species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.E. Sheridan, V. Nosenko, J. Goree, Experimental study of nonlinear solitary waves in two-dimensional dusty plasma. Phys. Plasmas 15, 073703 (2008). https://doi.org/10.1063/1.2955476

    Article  ADS  Google Scholar 

  2. J. Ozah, P.N. Deka, On the bifurcation of dust ion-acoustic nonlinear waves in a magnetised plasma with energetic electrons and positrons. Braz. J. Phys. 54, 13 (2024). https://doi.org/10.1007/s13538-023-01381-y

    Article  ADS  Google Scholar 

  3. N. Zerglaine, K. Aoutou, T.H. Zerguini, Propagation of dust ion acoustic wave in a uniform weak magnetic field. Astrophys. Space Sci.. Space Sci. 364, 84 (2019). https://doi.org/10.1007/s10509-019-3573-5

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Mannan, S.D. Nicola, R. Fedele, A.A. Mamun, Dust-acoustic wave electrostatic and self-gravitational potentials in an opposite polarity dusty plasma system. AIP Adv. 11, 025002 (2021). https://doi.org/10.1063/5.0033210

    Article  ADS  Google Scholar 

  5. M. Horanyi, D.A. Mendis, The effects of electrostatic charging on the dust distribution at Halley’s comet. Astrophys. J.. J. 307, 800 (1986). https://doi.org/10.1086/164466

    Article  ADS  Google Scholar 

  6. F. Verheest, Waves in Dusty Space Plasmas (Kluwer Academic Publishers, Dordrecht, 2000). https://doi.org/10.1007/978-94-010-9945-5

    Book  Google Scholar 

  7. M. Rosenberg, D.A. Mendis, UV-induced coulomb crystallization in a dusty gas. IEEE Trans. Plasma Sci. 23, 177 (1995). https://doi.org/10.1109/27.376584

    Article  ADS  Google Scholar 

  8. V.W. Chow, D.A. Mendis, M. Rosenberg, Role of grain size and particle velocity distribution in secondary electron emission in space plasmas. J. Geophys. Res.Geophys. Res. 98, 19065 (1993). https://doi.org/10.1029/93JA02014

    Article  ADS  Google Scholar 

  9. M. Rosenberg, D.A. Mendis, D.P. Sheehan, Positively charged dust crystals induced by radiative heating. IEEE Trans. Plasma Sci. 27, 239 (1999). https://doi.org/10.1109/27.763125

    Article  ADS  Google Scholar 

  10. P.K. Shukla, Shielding of a slowly moving test charge in dusty plasmas. Phys. Plasmas 1, 1362 (1994). https://doi.org/10.1063/1.870736

    Article  ADS  Google Scholar 

  11. M. Temerin, K. Cerny, W. Lotko, F.S. Mozer, Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett. 48, 1175 (1982). https://doi.org/10.1103/PhysRevLett.48.1175

    Article  ADS  Google Scholar 

  12. H. Matsumoto, H. Kojima, T. Miyatake, Y. Omura, M. Okada, I. Nagano, M. Tsutui, Electrostatic solitary waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL. Geophys. Res. Lett.. Res. Lett. 21, 2915–2918 (1994). https://doi.org/10.1029/94GL01284

    Article  ADS  Google Scholar 

  13. P. Harvey, F.S. Mozer, D. Pankow et al., The electric field instrument on the polar satellite. Space Sci. Rev. 71, 583–596 (1995). https://doi.org/10.1007/BF00751342

    Article  ADS  Google Scholar 

  14. C.E. Seyler, J.E. Wahlund, B. Holback, Theory and simulation of low frequency plasma waves and comparison to Freja satellite observations. J. Geophys. Res.Geophys. Res. 100, 21453–21472 (1995)

    Article  ADS  Google Scholar 

  15. A.A. Mamun, P.K. Shukla, Solitary potentials in cometary dusty plasmas. Geophys. Res. Lett.. Res. Lett. 29, 17 (2002). https://doi.org/10.1029/2002GL015219

    Article  ADS  Google Scholar 

  16. M. Farooq, M. Ahmad, Dust ion acoustic waves in four component magnetized dusty plasma with effect of slow rotation and superthermal electrons. Phys. Plasmas 24, 123707 (2017). https://doi.org/10.1063/1.5011248

    Article  ADS  Google Scholar 

  17. J. Ozah, P.N. Deka, Behaviour of dust ion-acoustic solitary wave structures in a magnetised superthermal plasma. J. Korean Phys. Soc. 82, 1163–1170 (2023). https://doi.org/10.1007/s40042-023-00793-y

    Article  ADS  Google Scholar 

  18. M. Kono, J. Vranjes, N. Batool, Electrostatic ion cyclotron and ion plasma waves in a symmetric pair-ion plasma cylinder. Phys. Rev. Lett. 112, 105001 (2014). https://doi.org/10.1103/PhysRevLett.112.105001

    Article  ADS  Google Scholar 

  19. A.P. Misra, Dust ion-acoustic shocks in quantum dusty pair-ion plasmas. Phys. Plasmas 16, 033702 (2009). https://doi.org/10.1063/1.3085789

    Article  ADS  Google Scholar 

  20. W.M. Moslem, P.K. Shukla, Properties of linear and nonlinear ion thermal waves in a pair ion plasma containing charged dust impurities. Phys. Plasmas 13, 122104 (2006). https://doi.org/10.1063/1.2397585

    Article  ADS  Google Scholar 

  21. W.M. Moslem, I. Kourakis, P.K. Shukla, Finite amplitude envelope solitons in a pair-ion plasma. Phys. Plasmas 14, 032107 (2007). https://doi.org/10.1063/1.2710455

    Article  ADS  Google Scholar 

  22. W. Oohara, R. Hatakeyama, Pair-ion plasma generation using fullerenes. Phys. Rev. Lett. 91, 205005 (2003). https://doi.org/10.1103/PhysRevLett.91.205005

    Article  ADS  Google Scholar 

  23. A.P. Misra, Complex Korteweg-de Vries equation and nonlinear dust-acoustic waves in a magnetoplasma with a pair of trapped ions. Appl. Math. Comput.Comput. 256, 368 (2015). https://doi.org/10.1016/j.amc.2015.01.020

    Article  MathSciNet  Google Scholar 

  24. M.M. Haider, Dust-ion-acoustic solitary structure with opposite polarity ions and non-thermal electrons. Eur. Phys. J. D 70, 28 (2016). https://doi.org/10.1140/epjd/e2016-60374-8

    Article  ADS  Google Scholar 

  25. S. Mahmood, H. Ur-Rehman, H. Saleem, Electrostatic Korteweg–de Vries solitons in pure pair-ion and pair-ion–electron plasmas. Phys. Scr. 80, 035502 (2009). https://doi.org/10.1088/0031-8949/80/03/035502

    Article  ADS  Google Scholar 

  26. Md.A. Salam, M.A. Akbar, M.Z. Ali, M.M. Haider, The magnetorotating and parametric effects on the dust-ion-acoustic solitary waves in a dusty plasma with trapped negative ions. Results in Physics 26, 104376 (2021). https://doi.org/10.1016/j.rinp.2021.104376

    Article  Google Scholar 

  27. M. Khan, M. Haris, M. Kamran, A.M. Mirza, Solitary waves dissipation in pair-ion plasmas for (r, q)-distributed electrons. Phys. Plasmas 29, 122104 (2022). https://doi.org/10.1063/5.0119989

    Article  ADS  Google Scholar 

  28. A.P. Misra, A. Barman, Oblique propagation of dust ion-acoustic solitary waves in a magnetized dusty pair-ion plasma. Phys. Plasmas 21, 073702 (2014). https://doi.org/10.1063/1.4886125

    Article  ADS  Google Scholar 

  29. N.C. Adhikary, A.P. Misra, M.K. Deka, A.N. Dev, Nonlinear dust-acoustic solitary waves and shocks in dusty plasmas with a pair of trapped ions. Phys. Plasmas 24, 073703 (2017). https://doi.org/10.1063/1.4989732

    Article  ADS  Google Scholar 

  30. E.E. Antonova, N.O. Ermakova, M.V. Stepanova, M.V. Teltzov, The influence of the energetic tails of ion distribution function on the main parameter of the theory of field-aligned current splitting and intercosmos-bulgaria-1300 observations. Adv. Space Res. 31, 1229 (2003). https://doi.org/10.1016/S0273-1177(02)00935-3

    Article  ADS  Google Scholar 

  31. H. Mori, M. Ishii, Y. Murayama, M. Kubota, K. Sakanoi, M.Y. Yamamoto, Y. Monzen, D. Lummerzheim, B.J. Watkins, Energy distribution of precipitating electrons estimated from optical and cosmic noise absorption measurements. Ann. Geophys.Geophys. 22, 1613 (2004). https://doi.org/10.5194/angeo-22-1613-2004

    Article  ADS  Google Scholar 

  32. S. Magni, H.E. Roman, R. Barni, C. Riccardi, Th. Pierre, D. Guyomarc’h, Statistical analysis of correlations and intermittency of a turbulent rotating column in a magnetoplasma device. Phys. Rev. E 72, 026403 (2005). https://doi.org/10.1103/PhysRevE.72.026403

    Article  ADS  Google Scholar 

  33. R. Boström, Observations of weak double layers on auroral field lines. IEEE Trans. Plasma Sci. 20, 756 (1992). https://doi.org/10.1109/27.199524

    Article  ADS  Google Scholar 

  34. P.O. Dovner, A.I. Eriksson, R. Boström, B. Holback, Freja multiprobe observations of electrostatic solitary structures. Geophys. Res. Lett.. Res. Lett. 21, 1827 (1994). https://doi.org/10.1029/94GL00886

    Article  ADS  Google Scholar 

  35. P.K. Prasad, A. Saha, Dynamical behavior and multistability of ion-acoustic waves in a magnetized Auroral zone plasma. J. Astrophys. Astr. 42, 9 (2021). https://doi.org/10.1007/s12036-021-09721-7

    Article  ADS  Google Scholar 

  36. M.M. Selim, A. El-Depsy, E.F. EI-Shamy, Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons. Astrophys. Space Sci.. Space Sci. 360, 66 (2015)

    Article  ADS  Google Scholar 

  37. M.S. Alam, M.M. Masud, A.A. Mamun, Cylindrical and spherical dust–ion acoustic modified Gardner solitons in dusty plasmas with two temperature superthermal electrons. Plasma Phys. Rep. 39, 1011 (2013). https://doi.org/10.1134/S1063780X14010012

    Article  ADS  Google Scholar 

  38. V.M. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res.Geophys. Res. 73, 2839 (1968). https://doi.org/10.1029/JA073i009p02839

    Article  ADS  Google Scholar 

  39. J. Ozah, P.N. Deka, Dynamical behaviour of nonlinear structures in superthermal plasmas associated with external periodic force. Indian J. Phys. 97, 2197–2208 (2023). https://doi.org/10.1007/s12648-023-02603-4

    Article  ADS  Google Scholar 

  40. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma. Phys. Plasmas 22, 102305 (2015). https://doi.org/10.1063/1.4933000

    Article  ADS  Google Scholar 

  41. R. Ali, A. Saha, P. Chatterjee, Analytical electron acoustic solitary wave solution for the forced KdV equation in superthermal plasmas. Phys. Plasmas 24, 122106 (2017). https://doi.org/10.1063/1.4994562

    Article  ADS  Google Scholar 

  42. M. Mehdipoor, The characteristics of ion acoustic shock waves in non-Maxwellian plasmas with (G’/G)-expansion method. Astrophys. Space Sci.. Space Sci. 338, 73 (2012). https://doi.org/10.1007/s10509-011-0907-3

    Article  ADS  Google Scholar 

  43. M. Shahmansouri, E. Astaraki, Transverse perturbation on three dimensional ion acoustic waves in electron–positron–ion plasma with high-energy tail electron and positron distribution. J Theor Appl Phys 8, 189 (2014). https://doi.org/10.1007/s40094-014-0148-2

    Article  Google Scholar 

  44. I.B. Bernstein, J.M. Green, M.D. Kruskal, Exact nonlinear plasma oscillations. Phys. Rev. 108, 546 (1957). https://doi.org/10.1103/PhysRev.108.546

    Article  MathSciNet  ADS  Google Scholar 

  45. S. Guo, L. Mei, Y. He, Y. Li, Time-fractional Schamel–KdV equation for dust-ion-acoustic waves in pair-ion plasma with trapped electrons and opposite polarity dust grains. Phys. Lett. A 380, 1031 (2016). https://doi.org/10.1016/j.physleta.2016.01.002

    Article  MathSciNet  ADS  Google Scholar 

  46. A. Paula, G. Mandala, M.R. Amina, P. Chatterjee, Analysis of solution of damped modified-KdV equation on dust-ion-acoustic wave in presence of superthermal electrons. Plasma Phys. Rep. 46, 83 (2020). https://doi.org/10.1134/S1063780X20010158

    Article  ADS  Google Scholar 

  47. S. Raut, S. Roy, S. Saha, A.N. Das, Studies on the dust–ion–acoustic solitary wave in planar and non-planar super-thermal plasmas with trapped electrons. Plasma Phys. Rep. 48, 627 (2022). https://doi.org/10.1134/S1063780X22100038

    Article  ADS  Google Scholar 

  48. A. Abdikian, M. Eghbali, The role of trapped electrons and charge dust fluctuation on dust-ionacoustic solitary waves. Indian J. Phys. 97, 7 (2023). https://doi.org/10.1007/s12648-021-02233-8

    Article  ADS  Google Scholar 

  49. S. Sultana, I. Kourakis, Dissipative ion-acoustic solitary waves in magnetized κ-distributed non-maxwellian plasmas. Physics 4, 68 (2022). https://doi.org/10.3390/physics4010007

    Article  ADS  Google Scholar 

  50. G. Williams, F. Verheest, M.A. Hellberg, M.G.M. Anowar, I. Kourakis, A Schamel equation for ion acoustic waves in superthermal plasmas. Phys. Plasmas 21, 092103 (2014). https://doi.org/10.1063/1.4894115

    Article  ADS  Google Scholar 

  51. A. Abdikian, Dust-ion-acoustic solitary waves in a magnetized dusty pair-ion plasma with Cairns-Gurevich electrons and opposite polarity dust particles. Contrib. Plasmas Phys. 58, 1 (2018). https://doi.org/10.1002/ctpp.201800020

    Article  Google Scholar 

  52. S. Sultana, Shock waves in magnetized plasmas with superthermal trapped electrons. Chin. J. Phys.. J. Phys. 69, 206 (2021). https://doi.org/10.1016/j.cjph.2020.12.005

    Article  MathSciNet  Google Scholar 

  53. A. Saha, B. Pradhan, S. Banerjee, Multistability and dynamical properties of ion-acoustic wave for the nonlinear Schrödinger equation in an electron–ion quantum plasma. Phys. Scr. 95, 055602 (2020). https://doi.org/10.1088/1402-4896/ab7052

    Article  ADS  Google Scholar 

  54. A. Abdikian, A. Saha, S. Alimirzaei, Bifurcation analysis of ion-acoustic waves in an adiabatic trapped electron and warm ion plasma. J. Taibah Univ. Sci. 14, 1051 (2020). https://doi.org/10.1080/16583655.2020.1798062

    Article  Google Scholar 

  55. W.F. El-Taibany, S.K. EL-Labany, A.S. El-Helbawy, A. Atteya, Dust-acoustic solitary and periodic waves in magnetized self-gravito-electrostatic opposite polarity dusty plasmas. Eur. Phys. J. Plus 137, 261 (2022). https://doi.org/10.1140/epjp/s13360-022-02461-9

    Article  Google Scholar 

  56. H. Schamel, Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Phys. 14, 905–924 (1972). https://doi.org/10.1088/0032-1028/14/10/002

    Article  ADS  Google Scholar 

  57. S. Chowdhury, L. Mandi, P. Chatterjee, Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas. Phys. Plasmas 25, 042112 (2018). https://doi.org/10.1063/1.5017559

    Article  ADS  Google Scholar 

  58. H. Alinejad, Role of trapped electrons on the propagation of localized dust ion-acoustic waves. Phys. Scr. 81, 015504 (2010). https://doi.org/10.1088/0031-8949/81/01/015504

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first author is the proposer and solver of the problem. The second author prepares the manuscript, and he connects different ideas about the results of the paper.

Corresponding author

Correspondence to Jintu Ozah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozah, J., Deka, P.N. Dynamical properties of nonlinear dust ion-acoustic waves on the basis of the Schamel–KdV equation. J. Korean Phys. Soc. (2024). https://doi.org/10.1007/s40042-024-01121-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40042-024-01121-8

Keywords

Navigation