Skip to main content

Advertisement

Log in

Investigation of the immune escape mechanism of Treponema pallidum

  • Review
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Background

Syphilis is a chronic sexually transmitted disease caused by Treponema pallidum subspecies pallidum (T. pallidum), which is a public health problem that seriously affects human health worldwide. T. pallidum is characterized by early transmission and immune escape and is therefore termed an “invisible pathogen”.

Methods

This review systematically summarizes the host’s innate and adaptive immune responses to T. pallidum infection as well as the escape mechanisms of T. pallidum.

Purpose

To lay the foundation for assessing the pathogenic mechanism and the systematic prevention and treatment of syphilis.

Conclusion

The immune escape mechanism of T. pallidum plays an important role in its survival. Exploring the occurrence and development of these mechanisms has laid the foundation for the development of syphilis vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Radolf JD, Deka RK, Anand A, Šmajs D, Norgard MV, Yang XF. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol. 2016;14:744–59. https://doi.org/10.1038/nrmicro.2016.141 (Epub 2016/11/01; PubMed PMID: 27721440; PubMed Central PMCID: PMCPMC5106329).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu MY, Gong HZ, Hu KR, Zheng HY, Wan X, Li J. Effect of syphilis infection on HIV acquisition: a systematic review and meta-analysis. Sex Transm Infect. 2020. https://doi.org/10.1136/sextrans-2020-054706 (Epub 2020/11/22; PubMed PMID: 33219164).

    Article  PubMed  Google Scholar 

  3. Kojima N, Klausner JD. An update on the global epidemiology of syphilis. Curr Epidemiol Rep. 2018;5:24–38. https://doi.org/10.1007/s40471-018-0138-z (Epub 2018/08/18; PubMed PMID: 30116697; PubMed Central PMCID: PMCPMC6089383).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peeling RW, Mabey D, Kamb ML, Chen XS, Radolf JD, Benzaken AS. Syphilis. Nat Rev Dis Prim. 2017;3:17073. https://doi.org/10.1038/nrdp.2017.73 (Epub 2017/10/13. PubMed PMID: 29022569; PubMed Central PMCID: PMCPMC5809176).

    Article  PubMed  Google Scholar 

  5. Grassly NC, Fraser C, Garnett GP. Host immunity and synchronized epidemics of syphilis across the United States. Nature. 2005;433:417–21. https://doi.org/10.1038/nature03072 (Epub 2005/01/28; PubMed PMID: 15674292).

    Article  CAS  PubMed  Google Scholar 

  6. Kojima Y, Furubayashi K, Kawahata T, Mori H, Komano J. Circulation of distinct Treponema pallidum strains in individuals with heterosexual orientation and men who have sex with men. J Clin Microbiol. 2019. https://doi.org/10.1128/jcm.01148-18 (Epub 2018/11/02. PubMed PMID: 30381419; PubMed Central PMCID: PMCPMC6322452).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lafond RE, Lukehart SA. Biological basis for syphilis. Clin Microbiol Rev. 2006;19:29–49. https://doi.org/10.1128/cmr.19.1.29-49.2006 (Epub 2006/01/19. PubMed PMID: 16418521; PubMed Central PMCID: PMCPMC1360276).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hawley KL, Cruz AR, Benjamin SJ, La Vake CJ, Cervantes JL, LeDoyt M, et al. IFNγ enhances CD64-potentiated phagocytosis of treponema pallidum opsonized with human syphilitic serum by human macrophages. Front Immunol. 2017;8:1227. https://doi.org/10.3389/fimmu.2017.01227 (Epub 2017/10/21; PubMed PMID: 29051759; PubMed Central PMCID: PMCPMC5633599).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cruz AR, Ramirez LG, Zuluaga AV, Pillay A, Abreu C, Valencia CA, et al. Immune evasion and recognition of the syphilis spirochete in blood and skin of secondary syphilis patients: two immunologically distinct compartments. PLoS Negl Trop Dis. 2012;6:e1717. https://doi.org/10.1371/journal.pntd.0001717 (Epub 2012/07/21; PubMed PMID: 22816000; PubMed Central PMCID: PMCPMC3398964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salazar JC, Cruz AR, Pope CD, Valderrama L, Trujillo R, Saravia NG, et al. Treponema pallidum elicits innate and adaptive cellular immune responses in skin and blood during secondary syphilis: a flow-cytometric analysis. J Infect Dis. 2007;195:879–87. https://doi.org/10.1086/511822 (Epub 2007/02/15; PubMed PMID: 17299719; PubMed Central PMCID: PMCPMC2131710).

    Article  CAS  PubMed  Google Scholar 

  11. Lukehart SA, Shaffer JM, Baker-Zander SA. A subpopulation of Treponema pallidum is resistant to phagocytosis: possible mechanism of persistence. J Infect Dis. 1992;166:1449–53. https://doi.org/10.1093/infdis/166.6.1449 (Epub 1992/12/01. PubMed PMID: 1431264).

    Article  CAS  PubMed  Google Scholar 

  12. Sellati TJ, Bouis DA, Kitchens RL, Darveau RP, Pugin J, Ulevitch RJ, et al. Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides activate monocytic cells via a CD14-dependent pathway distinct from that used by lipopolysaccharide. J Immunol (Balt). 1998;160:5455–64 (Epub 1998/05/30. PubMed PMID: 9605148).

    CAS  Google Scholar 

  13. Radolf JD, Kumar S. The Treponema pallidum outer membrane. Curr Top Microbiol Immunol. 2018;415:1–38. https://doi.org/10.1007/82_2017_44 (Epub 2017/08/30. PubMed PMID: 28849315; PubMed Central PMCID: PMCPMC5924592).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moore MW, Cruz AR, LaVake CJ, Marzo AL, Eggers CH, Salazar JC, et al. Phagocytosis of Borrelia burgdorferi and Treponema pallidum potentiates innate immune activation and induces gamma interferon production. Infect Immun. 2007;75:2046–62. https://doi.org/10.1128/iai.01666-06 (Epub 2007/01/16. PubMed PMID: 17220323; PubMed Central PMCID: PMCPMC1865718).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bouis DA, Popova TG, Takashima A, Norgard MV. Dendritic cells phagocytose and are activated by Treponema pallidum. Infect Immun. 2001;69:518–28. https://doi.org/10.1128/iai.69.1.518-528.2001 (Epub 2000/12/19. PubMed PMID: 11119545; PubMed Central PMCID: PMCPMC97911).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu SL, Lin Y, Zhu XZ, Liu D, Tong ML, Liu LL, et al. Autophagy promotes phagocytosis and clearance of Treponema pallidum via the NLRP3 inflammasome in macrophages. J Eur Acad Dermatol Venereol JEADV. 2020;34:2111–9. https://doi.org/10.1111/jdv.16463 (Epub 2020/04/16. PubMed PMID: 32294266).

    Article  CAS  PubMed  Google Scholar 

  17. Salazar JC, Hazlett KR, Radolf JD. The immune response to infection with Treponema pallidum, the stealth pathogen. Microb Infect. 2002;4:1133–40. https://doi.org/10.1016/s1286-4579(02)01638-6 (Epub 2002/10/04. PubMed PMID: 12361913).

    Article  CAS  Google Scholar 

  18. Lukehart SA. Scientific monogamy: thirty years dancing with the same bug: 2007 Thomas Parran Award Lecture. Sex Transm Dis. 2008;35:2–7. https://doi.org/10.1097/OLQ.0b013e318162c4f2 (Epub 2007/12/25. PubMed PMID: 18157060).

    Article  PubMed  Google Scholar 

  19. Van Voorhis WC, Barrett LK, Koelle DM, Nasio JM, Plummer FA, Lukehart SA. Primary and secondary syphilis lesions contain mRNA for Th1 cytokines. J Infect Dis. 1996;173:491–5. https://doi.org/10.1093/infdis/173.2.491 (Epub 1996/02/01. PubMed PMID: 8568320).

    Article  PubMed  Google Scholar 

  20. Stary G, Klein I, Brüggen MC, Kohlhofer S, Brunner PM, Spazierer D, et al. Host defense mechanisms in secondary syphilitic lesions: a role for IFN-gamma-/IL-17-producing CD8+ T cells? Am J Pathol. 2010;177:2421–32. https://doi.org/10.2353/ajpath.2010.100277 (Epub 2010/10/05. doi: 10.2353/ajpath.2010.100277. PubMed PMID: 20889558; PubMed Central PMCID: PMCPMC2966800).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carlson JA, Dabiri G, Cribier B, Sell S. The immunopathobiology of syphilis: the manifestations and course of syphilis are determined by the level of delayed-type hypersensitivity. Am J Dermatopathol. 2011;33:433–60. https://doi.org/10.1097/DAD.0b013e3181e8b587 (Epub 2011/06/23. PubMed PMID: 21694502; PubMed Central PMCID: PMCPMC3690623).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Babolin C, Amedei A, Ozolins D, Zilevica A, D’Elios MM, de Bernard M. TpF1 from Treponema pallidum activates inflammasome and promotes the development of regulatory T cells. J Immunol. 2011;187:1377–84. https://doi.org/10.4049/jimmunol.1100615 (Epub 2011/06/29. PubMed PMID: 21709157).

    Article  CAS  PubMed  Google Scholar 

  23. Fan YM, Zeng WJ, Wu ZH, Li SF. Immunophenotypes, apoptosis, and expression of Fas and Bcl-2 from peripheral blood lymphocytes in patients with secondary early syphilis. Sex Transm Dis. 2004;31:221–4. https://doi.org/10.1097/01.olq.0000119172.42652.51 (Epub 2004/03/19. PubMed PMID: 15028935).

    Article  CAS  PubMed  Google Scholar 

  24. Fitzgerald TJ. The Th1/Th2-like switch in syphilitic infection: is it detrimental? Infect Immun. 1992;60:3475–9. https://doi.org/10.1128/iai.60.9.3475-3479.1992 (Epub 1992/09/01. PubMed PMID: 1386838; PubMed Central PMCID: PMCPMC257347).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ho EL, Lukehart SA. Syphilis: using modern approaches to understand an old disease. J Clin Investig. 2011;121:4584–92. https://doi.org/10.1172/jci57173 (Epub 2011/12/03. PubMed PMID: 22133883; PubMed Central PMCID: PMCPMC3225993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hauser JT, Lindner R. Coalescence of B cell receptor and invariant chain MHC II in a raft-like membrane domain. J Leukoc Biol. 2014;96:843–55. https://doi.org/10.1189/jlb.2A0713-353R (Epub 2014/07/16. PubMed PMID: 25024398).

    Article  CAS  PubMed  Google Scholar 

  27. Barroso M, Tucker H, Drake L, Nichol K, Drake JR. Antigen-B cell receptor complexes associate with intracellular major histocompatibility complex (MHC) class II molecules. J Biol Chem. 2015;290:27101–12. https://doi.org/10.1074/jbc.M115.649582 (Epub 2015/09/25. PubMed PMID: 26400081; PubMed Central PMCID: PMCPMC4646406).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wolgemuth CW. Flagellar motility of the pathogenic spirochetes. Semin Cell Dev Biol. 2015;46:104–12. https://doi.org/10.1016/j.semcdb.2015.10.015 (Epub 2015/10/21. PubMed PMID: 26481969; PubMed Central PMCID: PMCPMC4994469).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harman M, Vig DK, Radolf JD, Wolgemuth CW. Viscous dynamics of Lyme disease and syphilis spirochetes reveal flagellar torque and drag. Biophys J. 2013;105:2273–80. https://doi.org/10.1016/j.bpj.2013.10.004 (Epub 2013/11/26. PubMed PMID: 24268139; PubMed Central PMCID: PMCPMC3838743).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lithgow KV, Church B, Gomez A, Tsao E, Houston S, Swayne LA, et al. Identification of the neuroinvasive pathogen host target, LamR, as an endothelial receptor for the Treponema pallidum Adhesin Tp0751. mSphere. 2020. https://doi.org/10.1128/mSphere.00195-20 (Epub 2020/04/03. PubMed PMID: 32238570; PubMed Central PMCID: PMCPMC7113585).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Djokic V, Giacani L, Parveen N. Analysis of host cell binding specificity mediated by the Tp0136 adhesin of the syphilis agent Treponema pallidum subsp. pallidum. PLoS Negl Trop Dis. 2019;13:e0007401. https://doi.org/10.1371/journal.pntd.0007401 (Epub 2019/05/10. PubMed PMID: 31071095; PubMed Central PMCID: PMCPMC6529012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lithgow KV, Tsao E, Schovanek E, Gomez A, Swayne LA, Cameron CE. Treponema pallidum disrupts VE-Cadherin intercellular junctions and traverses endothelial barriers using a cholesterol-dependent mechanism. Front Microbiol. 2021;12:691731. https://doi.org/10.3389/fmicb.2021.691731 (Epub 2021/08/07. PubMed PMID: 34354688; PubMed Central PMCID: PMCPMC8329343).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiang C, Xu M, Kuang X, Xiao J, Tan M, Xie Y, et al. Treponema pallidum flagellins stimulate MMP-9 and MMP-13 expression via TLR5 and MAPK/NF-κB signaling pathways in human epidermal keratinocytes. Exp Cell Res. 2017;361:46–55. https://doi.org/10.1016/j.yexcr.2017.09.040 (Epub 2017/10/07. PubMed PMID: 28982539).

    Article  CAS  PubMed  Google Scholar 

  34. Hook EW 3rd. Syphilis. Lancet (Lond, Engl). 2017;389:1550–7. https://doi.org/10.1016/s0140-6736(16)32411-4 (Epub 2016/12/21. PubMed PMID: 27993382).

    Article  Google Scholar 

  35. Deka RK, Brautigam CA, Goldberg M, Schuck P, Tomchick DR, Norgard MV. Structural, bioinformatic, and in vivo analyses of two Treponema pallidum lipoproteins reveal a unique TRAP transporter. J Mol Biol. 2012;416:678–96. https://doi.org/10.1016/j.jmb.2012.01.015 (Epub 2012/02/07. PubMed PMID: 22306465; PubMed Central PMCID: PMCPMC3289903).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weinstock GM, Hardham JM, McLeod MP, Sodergren EJ, Norris SJ. The genome of Treponema pallidum: new light on the agent of syphilis. FEMS Microbiol Rev. 1998;22:323–32. https://doi.org/10.1111/j.1574-6976.1998.tb00373.x (Epub 1998/12/23. PubMed PMID: 9862125).

    Article  CAS  PubMed  Google Scholar 

  37. Deka RK, Liu WZ, Norgard MV, Brautigam CA. Biophysical and biochemical characterization of TP0037, a d-lactate dehydrogenase, supports an acetogenic energy conservation pathway in Treponema pallidum. MBio. 2020. https://doi.org/10.1128/mBio.02249-20 (Epub 2020/09/24. PubMed PMID: 32963009; PubMed Central PMCID: PMCPMC7512555).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Blanco DR, Miller JN, Lovett MA. Surface antigens of the syphilis spirochete and their potential as virulence determinants. Emerg Infect Dis. 1997;3(1):11–20. https://doi.org/10.3201/eid0301.970102 (Epub 1997/01/01. PubMed PMID: 9126440; PubMed Central PMCID: PMCPMC2627599).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeigler JA, Jones AM, Jones RH, Kubica KM. Demonstration of extracellular material at the surface of pathogenic T. pallidum cells. Br J Vener Dis. 1976;52:1–8. https://doi.org/10.1136/sti.52.1.1 (Epub 1976/02/01. PubMed PMID: 769911; PubMed Central PMCID: PMCPMC1045202).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Strugnell RA, Handley CJ, Lowther DA, Faine S, Graves SR. Treponema pallidum does not synthesise in vitro a capsule containing glycosaminoglycans or proteoglycans. Br J Vener Dis. 1984;60:8–13. https://doi.org/10.1136/sti.60.1.8 (Epub 1984/02/01. PubMed PMID: 6365238; PubMed Central PMCID: PMCPMC1046262).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Strugnell RA, Handley CJ, Drummond L, Faine S, Lowther DA, Graves SR. Polyanions in syphilis: evidence that glycoproteins and macromolecules resembling glycosaminoglycans are synthesised by host tissues in response to infection with Treponema pallidum. Br J Vener Dis. 1984;60:75–82. https://doi.org/10.1136/sti.60.2.75 (Epub 1984/04/01. PubMed PMID: 6704698; PubMed Central PMCID: PMCPMC1046439).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Houston S, Russell S, Hof R, Roberts AK, Cullen P, Irvine K, et al. The multifunctional role of the pallilysin-associated Treponema pallidum protein, Tp0750, in promoting fibrinolysis and extracellular matrix component degradation. Mol Microbiol. 2014;91:618–34. https://doi.org/10.1111/mmi.12482 (Epub 2013/12/07. PubMed PMID: 24303899; PubMed Central PMCID: PMCPMC3954913).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pavis CS, Folds JD, Baseman JB. Cell-mediated immunity during syphilis. Br J Vener Dis. 1978;54:144–50. https://doi.org/10.1136/sti.54.3.144 (Epub 1978/06/01. PubMed PMID: 350348; PubMed Central PMCID: PMCPMC1045478).

    Article  CAS  PubMed  Google Scholar 

  44. Garantziotis S, Savani RC. Hyaluronan biology: a complex balancing act of structure, function, location and context. Matrix Biol. 2019;78–79:1–10. https://doi.org/10.1016/j.matbio.2019.02.002 (Epub 2019/02/26. PubMed PMID: 30802498; PubMed Central PMCID: PMCPMC6774756).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Secundino I, Lizcano A, Roupé KM, Wang X, Cole JN, Olson J, et al. Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation. J Mol Med (Berl, Germ). 2016;94:219–33. https://doi.org/10.1007/s00109-015-1341-8 (Epub 2015/09/29. PubMed PMID: 26411873; PubMed Central PMCID: PMCPMC4766071).

    Article  CAS  Google Scholar 

  46. Fitzgerald TJ, Miller JN, Repesh LA, Rice M, Urquhart A. Binding of glycosaminoglycans to the surface of Treponema pallidum and subsequent effects on complement interactions between antigen and antibody. Genitourin Med. 1985;61:13–20. https://doi.org/10.1136/sti.61.1.13 (Epub 1985/02/01. PubMed PMID: 3936770; PubMed Central PMCID: PMCPMC1011748).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang G, Meredith TC, Kahne D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr Opin Microbiol. 2013;16(6):779–85. https://doi.org/10.1016/j.mib.2013.09.007 (Epub 2013/10/24. PubMed PMID: 24148302; PubMed Central PMCID: PMCPMC3974409).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Radolf JD. Treponema pallidum and the quest for outer membrane proteins. Mol Microbiol. 1995;16:1067–73. https://doi.org/10.1111/j.1365-2958.1995.tb02332.x (Epub 1995/06/01. PubMed PMID: 8577243).

    Article  CAS  PubMed  Google Scholar 

  49. Setubal JC, Reis M, Matsunaga J, Haake DA. Lipoprotein computational prediction in spirochaetal genomes. Microbiology (Reading, England). 2006;152:113–21. https://doi.org/10.1099/mic.0.28317-0 (Epub 2005/12/31. PubMed PMID: 16385121; PubMed Central PMCID: PMCPMC2667199).

    Article  CAS  PubMed  Google Scholar 

  50. Luthra A, Montezuma-Rusca JM, La Vake CJ, LeDoyt M, Delgado KN, Davenport TC, et al. Evidence that immunization with TP0751, a bipartite Treponema pallidum lipoprotein with an intrinsically disordered region and lipocalin fold, fails to protect in the rabbit model of experimental syphilis. PLoS Pathog. 2020;16(9):e1008871. https://doi.org/10.1371/journal.ppat.1008871 (Epub 2020/09/17. PubMed PMID: 32936831; PubMed Central PMCID: PMCPMC7521688).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anand A, Luthra A, Dunham-Ems S, Caimano MJ, Karanian C, LeDoyt M, et al. TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure. J Bacteriol. 2012;194:2321–33. https://doi.org/10.1128/jb.00101-12 (Epub 2012/03/06. PubMed PMID: 22389487; PubMed Central PMCID: PMCPMC3347077).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shevchenko DV, Sellati TJ, Cox DL, Shevchenko OV, Robinson EJ, Radolf JD. Membrane topology and cellular location of the Treponema pallidum glycerophosphodiester phosphodiesterase (GlpQ) ortholog. Infect Immun. 1999;67:2266–76. https://doi.org/10.1128/iai.67.5.2266-2276.1999 (Epub 1999/05/04; PubMed PMID: 10225883; PubMed Central PMCID: PMCPMC115966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cameron CE, Castro C, Lukehart SA, Van Voorhis WC. Function and protective capacity of Treponema pallidum subsp. pallidum glycerophosphodiester phosphodiesterase. Infect Immun. 1998;66:5763–70. https://doi.org/10.1128/iai.66.12.5763-5770.1998 (Epub 1998/11/24, PubMed PMID: 9826352; PubMed Central PMCID: PMCPMC108728).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ling Z, Shao L, Liu X, Cheng Y, Yan C, Mei Y, et al. Regulatory T cells and plasmacytoid dendritic cells within the tumor microenvironment in gastric cancer are correlated with gastric microbiota dysbiosis: a preliminary study. Front Immunol. 2019;10:533. https://doi.org/10.3389/fimmu.2019.00533 (Epub 2019/04/03. PubMed PMID: 30936882; PubMed Central PMCID: PMCPMC6433099).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo X, Zhang X, Gan L, Zhou C, Zhao T, Zeng T, et al. The outer membrane protein Tp92 of Treponema pallidum induces human mononuclear cell death and IL-8 secretion. J Cell Mol Med. 2018;22(12):6039–54. https://doi.org/10.1111/jcmm.13879 (Epub 2019/01/01. PubMed PMID: 30596396; PubMed Central PMCID: PMCPMC6237608).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weiss N, Deboux C, Chaverot N, Miller F, Baron-Van Evercooren A, Couraud PO, et al. IL8 and CXCL13 are potent chemokines for the recruitment of human neural precursor cells across brain endothelial cells. J Neuroimmunol. 2010;223:131–4. https://doi.org/10.1016/j.jneuroim.2010.03.009 (Epub 2010/04/20 PubMed PMID: 20400187).

    Article  CAS  PubMed  Google Scholar 

  57. Poli A, Michel T, Thérésine M, Andrès E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology. 2009;126:458–65. https://doi.org/10.1111/j.1365-2567.2008.03027.x (Epub 2009/03/13. PubMed PMID: 19278419; PubMed Central PMCID: PMCPMC2673358).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo N, Liu L, Yang X, Song T, Li G, Li L, et al. Immunological changes in monocyte subsets and their association with Foxp3(+) regulatory T cells in HIV-1-infected individuals with syphilis: a brief research report. Front Immunol. 2019;10:714. https://doi.org/10.3389/fimmu.2019.00714 (Epub 2019/04/27. PubMed PMID: 31024549; PubMed Central PMCID: PMCPMC6465566).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li K, Wang C, Lu H, Gu X, Guan Z, Zhou P. Regulatory T cells in peripheral blood and cerebrospinal fluid of syphilis patients with and without neurological involvement. PLoS Negl Trop Dis. 2013;7:e2528. https://doi.org/10.1371/journal.pntd.0002528 (Epub 2013/11/19. PubMed PMID: 24244772; PubMed Central PMCID: PMCPMC3820703).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Qin J, Yang T, Wang H, Feng T, Liu X. Potential predictors for serofast state after treatment among HIV-negative persons with syphilis in China: a systematic review and meta-analysis. Iran J Public Health. 2015;44(2):155–69 (Epub 2015/04/24. PubMed PMID: 25905049; PubMed Central PMCID: PMCPMC4401873).

    PubMed  PubMed Central  Google Scholar 

  61. Yu Q, Li W, Mo X, Tan F, Yang L. Case report: microglia composition and immune response in an immunocompetent patient with an intracranial syphilitic gumma. Front Neurol. 2020;11:615434. https://doi.org/10.3389/fneur.2020.615434 (Epub 2021/02/02. PubMed PMID: 33519694; PubMed Central PMCID: PMCPMC7838610).

    Article  PubMed  Google Scholar 

  62. Belkaid Y, Tarbell K. Regulatory T cells in the control of host-microorganism interactions (*). Ann Rev Immunol. 2009;27:551–89. https://doi.org/10.1146/annurev.immunol.021908.132723 (Epub 2009/03/24. PubMed PMID: 19302048).

    Article  CAS  Google Scholar 

  63. Kim HR, Park HJ, Son J, Lee JG, Chung KY, Cho NH, et al. Tumor microenvironment dictates regulatory T cell phenotype: upregulated immune checkpoints reinforce suppressive function. J Immunother Cancer. 2019;7:339. https://doi.org/10.1186/s40425-019-0785-8 (Epub 2019/12/06. PubMed PMID: 31801611; PubMed Central PMCID: PMCPMC6894345).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Drago F, Javor S, Parodi A. Relevance in biology and mechanisms of immune and treatment evasion of Treponema pallidum. G Ital Dermatol Venereol. 2019;154:573–80. https://doi.org/10.23736/s0392-0488.17.05830-8 (Epub 2017/12/05. PubMed PMID: 29199801).

    Article  PubMed  Google Scholar 

  65. Anand A, LeDoyt M, Karanian C, Luthra A, Koszelak-Rosenblum M, Malkowski MG, et al. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I: OUTER MEMBRANE INSERTION, TRIMERIZATION, AND PORIN FUNCTION REQUIRE A C-TERMINAL β-BARREL DOMAIN. J Biol Chem. 2015;290:12313–31. https://doi.org/10.1074/jbc.M114.629188 (Epub 2015/03/26. PubMed PMID: 25805501; PubMed Central PMCID: PMCPMC4424362).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, Van Voorhis WC, et al. Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response. J Exp Med. 1999;189:647–56. https://doi.org/10.1084/jem.189.4.647 (Epub 1999/02/17. PubMed PMID: 9989979; PubMed Central PMCID: PMCPMC2192927).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Giacani L, Molini B, Godornes C, Barrett L, Van Voorhis W, Centurion-Lara A, et al. Quantitative analysis of tpr gene expression in Treponema pallidum isolates: differences among isolates and correlation with T cell responsiveness in experimental syphilis. Infect Immun. 2007;75:104–12. https://doi.org/10.1128/iai.01124-06 (Epub 2006/10/13. PubMed PMID: 17030565; PubMed Central PMCID: PMCPMC1828388).

    Article  CAS  PubMed  Google Scholar 

  68. Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, Caimano MJ, et al. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun. 2010;78:5178–94. https://doi.org/10.1128/iai.00834-10 (Epub 2010/09/30. PubMed PMID: 20876295; PubMed Central PMCID: PMCPMC2981305).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morgan CA, Molini BJ, Lukehart SA, Van Voorhis WC. Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J Immunol. 2002;169:952–7. https://doi.org/10.4049/jimmunol.169.2.952 (Epub 2002/07/05 PubMed PMID: 12097401).

    Article  CAS  PubMed  Google Scholar 

  70. LaFond RE, Molini BJ, Van Voorhis WC, Lukehart SA. Antigenic variation of TprK V regions abrogates specific antibody binding in syphilis. Infect Immun. 2006;74:6244–51. https://doi.org/10.1128/iai.00827-06 (Epub 2006/08/23. PubMed PMID: 16923793; PubMed Central PMCID: PMCPMC1695500).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun ES, Molini BJ, Barrett LK, Centurion-Lara A, Lukehart SA, Van Voorhis WC. Subfamily I Treponema pallidum repeat protein family: sequence variation and immunity. Microb Infect. 2004;6:725–37. https://doi.org/10.1016/j.micinf.2004.04.001 (Epub 2004/06/23. PubMed PMID: 15207819).

    Article  CAS  Google Scholar 

  72. Addetia A, Lin MJ, Phung Q, Xie H, Huang ML, Ciccarese G, et al. Estimation of full-length TprK diversity in Treponema pallidum subsp. pallidum. MBio. 2020. https://doi.org/10.1128/mBio.02726-20 (Epub 2020/10/29. PubMed PMID: 33109767; PubMed Central PMCID: PMCPMC7593977).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, et al. Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol. 2012;194:4208–25. https://doi.org/10.1128/jb.00863-12 (Epub 2012/06/05. PubMed PMID: 22661689; PubMed Central PMCID: PMCPMC3416249).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu D, Tong ML, Luo X, Liu LL, Lin LR, Zhang HL, et al. Profile of the tprK gene in primary syphilis patients based on next-generation sequencing. PLoS Negl Trop Dis. 2019;13:e0006855. https://doi.org/10.1371/journal.pntd.0006855 (Epub 2019/02/23. PubMed PMID: 30789907; PubMed Central PMCID: PMCPMC6400401).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. LaFond RE, Centurion-Lara A, Godornes C, Van Voorhis WC, Lukehart SA. TprK sequence diversity accumulates during infection of rabbits with Treponema pallidum subsp. pallidum Nichols strain. Infect Immun. 2006;74:1896–906. https://doi.org/10.1128/iai.74.3.1896-1906.2006 (Epub 2006/02/24. PubMed PMID: 16495565; PubMed Central PMCID: PMCPMC1418662).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Giacani L, Molini BJ, Kim EY, Godornes BC, Leader BT, Tantalo LC, et al. Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J Immunol. 2010;184(7):3822–9. https://doi.org/10.4049/jimmunol.0902788 (Epub 2010/03/02. PubMed PMID: 20190145; PubMed Central PMCID: PMCPMC3042355).

    Article  CAS  PubMed  Google Scholar 

  77. Edmondson DG, Hu B, Norris SJ. Long-term in vitro culture of the syphilis spirochete Treponema pallidum subsp. pallidum. MBio. 2018. https://doi.org/10.1128/mBio.01153-18 (Epub 2018/06/28. PubMed PMID: 29946052; PubMed Central PMCID: PMCPMC6020297).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fieldsteel AH, Cox DL, Moeckli RA. Cultivation of virulent Treponema pallidum in tissue culture. Infect Immun. 1981;32:908–15. https://doi.org/10.1128/iai.32.2.908-915.1981 (Epub 1981/05/01. PubMed PMID: 7019081; PubMed Central PMCID: PMCPMC351528).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin MJ, Haynes AM, Addetia A, Lieberman NAP, Phung Q, Xie H, et al. Longitudinal TprK profiling of in vivo and in vitro-propagated Treponema pallidum subsp pallidum reveals accumulation of antigenic variants in absence of immune pressure. PLoS Negl Trop Dis. 2021;15:e0009753. https://doi.org/10.1371/journal.pntd.0009753 (Epub 2021/09/08. PubMed PMID: 34492041; PubMed Central PMCID: PMCPMC8480903).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu D, Tong ML, Lin Y, Liu LL, Lin LR, Yang TC. Insights into the genetic variation profile of tprK in Treponema pallidum during the development of natural human syphilis infection. PLoS Negl Trop Dis. 2019;13:e0007621. https://doi.org/10.1371/journal.pntd.0007621 (Epub 2019/07/23. PubMed PMID: 31329597; PubMed Central PMCID: PMCPMC6675121).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pinto M, Borges V, Antelo M, Pinheiro M, Nunes A, Azevedo J, et al. Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol. 2016;2:16190. https://doi.org/10.1038/nmicrobiol.2016.190 (Epub 2016/10/18. PubMed PMID: 27748767).

    Article  CAS  PubMed  Google Scholar 

  82. Brazda V, Fojta M, Bowater RP. Structures and stability of simple DNA repeats from bacteria. Biochem J. 2020;477:325–39. https://doi.org/10.1042/bcj20190703 (Epub 2020/01/23. PubMed PMID: 31967649; PubMed Central PMCID: PMCPMC7015867).

    Article  CAS  PubMed  Google Scholar 

  83. Mukherjee P, Lahiri I, Pata JD. Human polymerase kappa uses a template-slippage deletion mechanism, but can realign the slipped strands to favour base substitution mutations over deletions. Nucleic Acids Res. 2013;41:5024–35. https://doi.org/10.1093/nar/gkt179 (Epub 2013/04/06. PubMed PMID: 23558743; PubMed Central PMCID: PMCPMC3643592).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bayliss CD, Palmer ME. Evolution of simple sequence repeat-mediated phase variation in bacterial genomes. Ann N Y Acad Sci. 2012;1267:39–44. https://doi.org/10.1111/j.1749-6632.2012.06584.x (Epub 2012/09/08 PubMed PMID: 22954215).

    Article  CAS  PubMed  Google Scholar 

  85. Giacani L, Brandt SL, Ke W, Reid TB, Molini BJ, Iverson-Cabral S, et al. Transcription of TP0126, Treponema pallidum putative OmpW homolog, is regulated by the length of a homopolymeric guanosine repeat. Infect Immun. 2015;83:2275–89. https://doi.org/10.1128/iai.00360-15 (Epub 2015/03/25. PubMed PMID: 25802057; PubMed Central PMCID: PMCPMC4432754).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Giacani L, Hevner K, Centurion-Lara A. Gene organization and transcriptional analysis of the tprJ, tprI, tprG, and tprF loci in Treponema pallidum strains Nichols and Sea 81-4. J Bacteriol. 2005;187(17):6084–93. https://doi.org/10.1128/jb.187.17.6084-6093.2005 (Epub 2005/08/20. PubMed PMID: 16109950; PubMed Central PMCID: PMCPMC1196134).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Giacani L, Lukehart S, Centurion-Lara A. Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp pallidum. FEMS Immunol Med Microbiol. 2007;51:289–301. https://doi.org/10.1111/j.1574-695X.2007.00303.x (Epub 2007/08/09. PubMed PMID: 17683506; PubMed Central PMCID: PMCPMC3006228).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haynes AM, Godornes C, Ke W, Giacani L. Evaluation of the protective ability of the Treponema pallidum subsp pallidum Tp0126 OmpW homolog in the rabbit model of syphilis. Infect Immun. 2019. https://doi.org/10.1128/iai.00323-19 (Epub 2019/06/12. PubMed PMID: 31182617; PubMed Central PMCID: PMCPMC6652746).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Haynes AM, Fernandez M, Romeis E, Mitjà O, Konda KA, Vargas SK, et al. Transcriptional and immunological analysis of the putative outer membrane protein and vaccine candidate TprL of Treponema pallidum. PLoS Negl Trop Dis. 2021;15:e0008812. https://doi.org/10.1371/journal.pntd.0008812 (Epub 2021/01/27. PubMed PMID: 33497377; PubMed Central PMCID: PMCPMC7864442).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Deitsch KW, Lukehart SA, Stringer JR. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol. 2009;7:493–503. https://doi.org/10.1038/nrmicro2145 (Epub 2009/06/09. PubMed PMID: 19503065; PubMed Central PMCID: PMCPMC3676878).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol. 2018;19:621–37. https://doi.org/10.1038/s41580-018-0028-8 (Epub 2018/06/28. PubMed PMID: 29946135; PubMed Central PMCID: PMCPMC6205604).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kumar S, Caimano MJ, Anand A, Dey A, Hawley KL, LeDoyt ME, et al. Sequence variation of rare outer membrane protein β-Barrel domains in clinical strains provides insights into the evolution of Treponema pallidum subsp pallidum, the syphilis spirochete. MBio. 2018. https://doi.org/10.1128/mBio.01006-18 (Epub 2018/06/14. PubMed PMID: 29895642; PubMed Central PMCID: PMCPMC6016234).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Brinck Reid T, Lukehart SA. Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis. 2013;7:e2222. https://doi.org/10.1371/journal.pntd.0002222 (PubMed PMID: 23696912; PubMed Central PMCID: PMCPMC3656149 Epub 2013/05/23).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cameron CE, Lukehart SA. Current status of syphilis vaccine development: need, challenges, prospects. Vaccine. 2014;32:1602–9. https://doi.org/10.1016/j.vaccine.2013.09.053 (PubMed PMID: 24135571; PubMed Central PMCID: PMCPMC3951677 Epub 2013/10/19).

    Article  PubMed  Google Scholar 

  95. Bajic G, Degn SE, Thiel S, Andersen GR. Complement activation, regulation, and molecular basis for complement-related diseases. EMBO J. 2015;34:2735–57. https://doi.org/10.15252/embj.201591881 (PubMed PMID: 26489954; PubMed Central PMCID: PMCPMC4682646 Epub 2015/10/23).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Skare JT, Garcia BL. Complement evasion by lyme disease spirochetes. Trends Microbiol. 2020;28:889–99. https://doi.org/10.1016/j.tim.2020.05.004 (PubMed PMID: 32482556; PubMed Central PMCID: PMCPMC7572514 Epub 2020/06/03).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kelesidis T. The cross-talk between spirochetal lipoproteins and immunity. Front Immunol. 2014;5:310. https://doi.org/10.3389/fimmu.2014.00310 (PubMed PMID: 25071771; PubMed Central PMCID: PMCPMC4075078 Epub 2014/07/30).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fitzgerald TJ. Activation of the classical and alternative pathways of complement by Treponema pallidum subsp pallidum and Treponema vincentii. Infect Immun. 1987;55:2066–73. https://doi.org/10.1128/iai.55.9.2066-2073.1987 (PubMed PMID: 3305362; PubMed Central PMCID: PMCPMC260658. Epub 1987/09/01).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rice M, Fitzgerald TJ. Immune immobilization of Treponema pallidum: antibody and complement interactions revisited. Can J Microbiol. 1985;31:1147–51. https://doi.org/10.1139/m85-216 (PubMed PMID: 3913494 Epub 1985/12/01).

    Article  CAS  PubMed  Google Scholar 

  100. Blanco DR, Walker EM, Haake DA, Champion CI, Miller JN, Lovett MA. Complement activation limits the rate of in vitro treponemicidal activity and correlates with antibody-mediated aggregation of Treponema pallidum rare outer membrane protein. J Immunol. 1990;144:1914–21 (Epub 1990/03/01. PubMed PMID: 2407784).

    Article  CAS  PubMed  Google Scholar 

  101. Lewinski MA, Miller JN, Lovett MA, Blanco DR. Correlation of immunity in experimental syphilis with serum-mediated aggregation of Treponema pallidum rare outer membrane proteins. Infect Immun. 1999;67:3631–6. https://doi.org/10.1128/iai.67.7.3631-3636.1999 (PubMed PMID: 10377149; PubMed Central PMCID: PMCPMC116554. Epub 1999/06/22).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Paget MS. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules. 2015;5(3):1245–65. https://doi.org/10.3390/biom5031245 (PubMed PMID: 26131973; PubMed Central PMCID: PMCPMC4598750. Epub 2015/07/02).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sineva E, Savkina M, Ades SE. Themes and variations in gene regulation by extracytoplasmic function (ECF) sigma factors. Curr Opin Microbiol. 2017;36:128–37. https://doi.org/10.1016/j.mib.2017.05.004 (PubMed PMID: 28575802; PubMed Central PMCID: PMCPMC5534382. Epub 2017/06/03).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Giacani L, Denisenko O, Tompa M, Centurion-Lara A. Identification of the Treponema pallidum subsp pallidum TP0092 (RpoE) regulon and its implications for pathogen persistence in the host and syphilis pathogenesis. J Bacteriol. 2013;195:896–907. https://doi.org/10.1128/jb.01973-12 (PubMed PMID: 23243302; PubMed Central PMCID: PMCPMC3562100. Epub 2012/12/18).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Subramanian G, Koonin EV, Aravind L. Comparative genome analysis of the pathogenic spirochetes Borrelia burgdorferi and Treponema pallidum. Infect Immun. 2000;68:1633–48. https://doi.org/10.1128/iai.68.3.1633-1648.2000 (PubMed PMID: 10678983; PubMed Central PMCID: PMCPMC97324 Epub 2000/02/26).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science (New York, NY). 1998;281:375–88. https://doi.org/10.1126/science.281.5375.375 (PubMed PMID: 9665876 Epub 1998/07/17).

    Article  CAS  Google Scholar 

  107. Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol. 2012;10:525–37. https://doi.org/10.1038/nrmicro2836 (PubMed PMID: 22796883; PubMed Central PMCID: PMCPMC3875331 Epub 2012/07/17).

    Article  CAS  PubMed  Google Scholar 

  108. Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr (Bethesda, Md). 2017;8:126–36. https://doi.org/10.3945/an.116.013961 (PubMed PMID: 28096133; PubMed Central PMCID: PMCPMC5227985. Epub 2017/01/18).

    Article  CAS  Google Scholar 

  109. Lo M, Murray GL, Khoo CA, Haake DA, Zuerner RL, Adler B. Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun. 2010;78:4850–9. https://doi.org/10.1128/iai.00435-10 (PubMed PMID: 20805337; PubMed Central PMCID: PMCPMC2976334. Epub 2010/09/02).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jolivet-Gougeon A, Bonnaure-Mallet M. Treponema, iron and neurodegeneration. Curr Alzheimer Res. 2018;15:716–22. https://doi.org/10.2174/1567205013666161122093404 (PubMed PMID: 27875949 Epub 2016/11/24).

    Article  CAS  PubMed  Google Scholar 

  111. Raymond KN, Allred BE, Sia AK. Coordination chemistry of microbial iron transport. Acc Chem Res. 2015;48:2496–505. https://doi.org/10.1021/acs.accounts.5b00301 (PubMed PMID: 26332443; PubMed Central PMCID: PMCPMC4576731 Epub 2015/09/04).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hazlett KR, Rusnak F, Kehres DG, Bearden SW, La Vake CJ, La Vake ME, et al. The Treponema pallidum tro operon encodes a multiple metal transporter, a zinc-dependent transcriptional repressor, and a semi-autonomously expressed phosphoglycerate mutase. J Biol Chem. 2003;278:20687–94. https://doi.org/10.1074/jbc.M300781200 (PubMed PMID: 12668673 Epub 2003/04/02).

    Article  CAS  PubMed  Google Scholar 

  113. Desrosiers DC, Sun YC, Zaidi AA, Eggers CH, Cox DL, Radolf JD. The general transition metal (Tro) and Zn2+ (Znu) transporters in Treponema pallidum: analysis of metal specificities and expression profiles. Mol Microbiol. 2007;65:137–52. https://doi.org/10.1111/j.1365-2958.2007.05771.x (PubMed PMID: 17581125 Epub 2007/06/22).

    Article  CAS  PubMed  Google Scholar 

  114. Deka RK, Brautigam CA, Tomson FL, Lumpkins SB, Tomchick DR, Machius M, et al. Crystal structure of the Tp34 (TP0971) lipoprotein of Treponema pallidum: implications of its metal-bound state and affinity for human lactoferrin. J Biol Chem. 2007;282:5944–58. https://doi.org/10.1074/jbc.M610215200 (PubMed PMID: 17192261 Epub 2006/12/29).

    Article  CAS  PubMed  Google Scholar 

  115. Brautigam CA, Deka RK, Ouyang Z, Machius M, Knutsen G, Tomchick DR, et al. Biophysical and bioinformatic analyses implicate the Treponema pallidum Tp34 lipoprotein (Tp0971) in transition metal homeostasis. J Bacteriol. 2012;194:6771–81. https://doi.org/10.1128/jb.01494-12 (PubMed PMID: 23042995; PubMed Central PMCID: PMCPMC3510569 Epub 2012/10/09).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Thumiger A, Polenghi A, Papinutto E, Battistutta R, Montecucco C, Zanotti G. Crystal structure of antigen TpF1 from Treponema pallidum. Proteins. 2006;62(3):827–30. https://doi.org/10.1002/prot.20828 (PubMed PMID: 16345079 Epub 2005/12/14).

    Article  CAS  PubMed  Google Scholar 

  117. Outten CE, O’Halloran TV. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science (New York, NY). 2001;292:2488–92. https://doi.org/10.1126/science.1060331 (PubMed PMID: 11397910 Epub 2001/06/09).

    Article  CAS  Google Scholar 

  118. Braymer JJ, Giedroc DP. Recent developments in copper and zinc homeostasis in bacterial pathogens. Curr Opin Chem Biol. 2014;19:59–66. https://doi.org/10.1016/j.cbpa.2013.12.021 (PubMed PMID: 24463765; PubMed Central PMCID: PMCPMC4008645 Epub 2014/01/28).

    Article  CAS  PubMed  Google Scholar 

  119. Posey JE, Hardham JM, Norris SJ, Gherardini FC. Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum. Proc Natl Acad Sci U S A. 1999;96:10887–92. https://doi.org/10.1073/pnas.96.19.10887 (PubMed PMID: 10485921; PubMed Central PMCID: PMCPMC17978 Epub 1999/09/15).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Weiss G, Carver PL. Role of divalent metals in infectious disease susceptibility and outcome. Clin Microbiol Infect. 2018;24:16–23. https://doi.org/10.1016/j.cmi.2017.01.018 (PubMed PMID: 28143784 Epub 2017/02/02).

    Article  CAS  PubMed  Google Scholar 

  121. Liu Y, Li W, Wei Y, Jiang Y, Tan X. Efficient preparation and metal specificity of the regulatory protein TroR from the human pathogen Treponema pallidum. Met Integr Biometal Sci. 2013;5:1448–57. https://doi.org/10.1039/c3mt00163f (PubMed PMID: 23945957 Epub 2013/08/16).

    Article  CAS  Google Scholar 

  122. Houston S, Lithgow KV, Osbak KK, Kenyon CR, Cameron CE. Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis. BMC Struct Biol. 2018;18:7. https://doi.org/10.1186/s12900-018-0086-3 (PubMed PMID: 29769048; PubMed Central PMCID: PMCPMC5956850 Epub 2018/05/18).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. De Lay BD, Cameron TA, De Lay NR, Norris SJ, Edmondson DG. Comparison of transcriptional profiles of Treponema pallidum during experimental infection of rabbits and in vitro culture: highly similar, yet different. PLoS Pathog. 2021;17:e1009949. https://doi.org/10.1371/journal.ppat.1009949 (PubMed PMID: 34570834; PubMed Central PMCID: PMCPMC8525777 Epub 2021/09/28).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Courjon J, Hubiche T, Dupin N, Grange PA, Del Giudice P. Clinical aspects of syphilis reinfection in HIV-infected patients. Dermatology (Basel, Switzerland). 2015;230:302–7. https://doi.org/10.1159/000369617 (PubMed PMID: 25823442 Epub 2015/04/01).

    Article  PubMed  Google Scholar 

  125. Marra CM, Maxwell CL, Sahi SK, Tantalo LC, Dunaway SB, Lukehart SA. Previous syphilis alters the course of subsequent episodes of syphilis. Clin Infect Dis. 2020;71:1243–7. https://doi.org/10.1093/cid/ciz943 (PubMed PMID: 31560366; PubMed Central PMCID: PMCPMC7442847 Epub 2019/09/29).

    Article  PubMed  Google Scholar 

  126. Hübner A, Yang X, Nolen DM, Popova TG, Cabello FC, Norgard MV. Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A. 2001;98:12724–9. https://doi.org/10.1073/pnas.231442498 (PubMed PMID: 11675503; PubMed Central PMCID: PMCPMC60121 Epub 2001/10/25).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Yang XF, Alani SM, Norgard MV. The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci U S A. 2003;100:11001–6. https://doi.org/10.1073/pnas.1834315100 (PubMed PMID: 12949258; PubMed Central PMCID: PMCPMC196916 Epub 2003/09/02).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bush M, Dixon R. The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev MMBR. 2012;76:497–529. https://doi.org/10.1128/mmbr.00006-12 (PubMed PMID: 22933558; PubMed Central PMCID: PMCPMC3429621 Epub 2012/08/31).

    Article  CAS  PubMed  Google Scholar 

  129. Anderson JK, Smith TG, Hoover TR. Sense and sensibility: flagellum-mediated gene regulation. Trends Microbiol. 2010;18:30–7. https://doi.org/10.1016/j.tim.2009.11.001 (PubMed PMID: 19942438; PubMed Central PMCID: PMCPMC2818477. Epub 2009/11/28).

    Article  CAS  PubMed  Google Scholar 

  130. Charon NW, Greenberg EP, Koopman MB, Limberger RJ. Spirochete chemotaxis, motility, and the structure of the spirochetal periplasmic flagella. Res Microbiol. 1992;143:597–603. https://doi.org/10.1016/0923-2508(92)90117-7 (PubMed PMID: 1475520 Epub 1992/07/01).

    Article  CAS  PubMed  Google Scholar 

  131. Radolf JD, Desrosiers DC. Treponema pallidum, the stealth pathogen, changes, but how? Mol Microbiol. 2009;72:1081–6. https://doi.org/10.1111/j.1365-2958.2009.06711.x (PubMed PMID: 19432802; PubMed Central PMCID: PMCPMC2975512 Epub 2009/05/13).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thank you all for helping and guiding me.

Funding

This study was supported by the Natural Science Foundation of Hunan Province (2022JJ30532), Clinical “4310” Project of the University of South China (20224310NHYCG02) and Hunan Provincial Innovation University of South China Innovation Foundation for Postgraduate (No. 213YXC016).

Author information

Authors and Affiliations

Authors

Contributions

Wrote the paper: YT, YZ and BH. Revised the paper: TC, XZ, BP, YB, CN, EC, XX and YL. Critically revised the manuscript for important intellectual content: SL. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuangquan Liu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical standard statement

This review does not contain any research on humans and animals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Zhou, Y., He, B. et al. Investigation of the immune escape mechanism of Treponema pallidum. Infection 51, 305–321 (2023). https://doi.org/10.1007/s15010-022-01939-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-022-01939-z

Keywords

Navigation