Skip to main content

Advertisement

Log in

Updates on Rare Genetic Variants, Genetic Testing, and Gene Therapy in Individuals With Obesity

  • REVIEW
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this paper is to aggregate information on monogenic contributions to obesity in the past five years and to provide guidance for genetic testing in clinical care.

Recent Findings

Advances in sequencing technologies, increasing awareness, access to testing, and new treatments have increased the utilization of genetics in clinical care. There is increasing recognition of the prevalence of rare genetic obesity from variants with mean allele frequency < 5% –new variants in known genes as well as identification of novel genes– causing monogenic obesity. While most of these genes are in the leptin melanocortin pathway, those in adipocytes may also contribute. Common variants may contribute either to higher lifetime tendency for weight gain or provide protection from monogenic obesity.

Summary

While specific genetic mutations are rare, these segregate in individuals with early-onset severe obesity; thus, collectively genetic etiologies are not as rare. Some genetic conditions are amenable to targeted treatment. Research into the discovery of novel genetic causes as well as targeted treatment is growing over time. The utility of therapeutic strategies based on the genetic risk of obesity is an advancing frontier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Centers for Disease Control and Prevention. Adult obesity prevalence maps. National Center for Chronic Disease Prevention and Health Promotion, Division of Nutrition, Physical Activity, and Obesity; 2023. https://www.cdc.gov/obesity/data/prevalence-maps.html. Accessed 12 Jan 2024.

  2. Stierman B, Afful J, Carroll MD, Chen TC, Davy O, Fink S, Fryar CD, Gu Q, Hales CM, Hughes JP, Ostchega Y. National health and nutrition examination survey 2017–March 2020 prepandemic data files development of files and prevalence estimates for selected health outcomes. Hyattsville, MD: National Health Statistics Reports; 2021. https://doi.org/10.15620/cdc:106273.

    Book  Google Scholar 

  3. World Obesity Federation. World Obesity Atlas 2024. https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2024. Accessed 24 Apr 2024.

  4. Couzin-Frankel J. Obesity meets its match. Science. 2023;382(6676):1226–7. https://doi.org/10.1126/science.adn4691.

    Article  PubMed  Google Scholar 

  5. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9. https://doi.org/10.1038/s41586-018-0579-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. • Backman JD, Li AH, Marcketta A, Sun D, Mbatchou J, Kessler MD, Benner C, Liu D, Locke AE, Balasubramanian S, et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature. 2021;599(7886):628–34. https://doi.org/10.1038/s41586-021-04103-z. Paper presents the UKBB sequencing data. This data can be used as controls and for discovery of genetic linkage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. • Ramirez AH, Gebo KA, Harris PA. Progress with the all of us research program: opening access for researchers. JAMA. 2021;325(24):2441–2. https://doi.org/10.1001/jama.2021.7702. Paper presents the progress on All of Us sequencing data. This data can be used as controls and for discovery of genetic linkage.

    Article  PubMed  Google Scholar 

  8. FDA News Release. FDA approves first gene therapies to treat patients with sickle cell disease. FDA Newsroom; 2023. https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-treat-patients-sickle-cell-disease. Accessed 15 Jan 2024.

  9. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Investig. 2002;110(8):1093–103. https://doi.org/10.1172/jci0215693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387(6636):903–8. https://doi.org/10.1038/43185.

    Article  CAS  PubMed  Google Scholar 

  11. Wabitsch M, Funcke JB, von Schnurbein J, Denzer F, Lahr G, Mazen I, El-Gammal M, Denzer C, Moss A, Debatin KM, et al. Severe early-onset obesity due to bioinactive leptin caused by a p.N103K mutation in the leptin gene. J Clin Endocrinol Metab. 2015;100(9):3227–30. https://doi.org/10.1210/jc.2015-2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wabitsch M, Funcke JB, Lennerz B, Kuhnle-Krahl U, Lahr G, Debatin KM, Vatter P, Gierschik P, Moepps B, Fischer-Posovszky P. Biologically inactive leptin and early-onset extreme obesity. N Engl J Med. 2015;372(1):48–54. https://doi.org/10.1056/NEJMoa1406653.

    Article  CAS  PubMed  Google Scholar 

  13. •• Markham A. Setmelanotide: first approval. Drugs. 2021;81(3):397–403. https://doi.org/10.1007/s40265-021-01470-9. Setmelanotide is a MC4R agonist that is used to treat rare, genetic forms of obesity. This paper discusses the genetic mutations that are appropriate for treatment with the drug.

    Article  CAS  PubMed  Google Scholar 

  14. •• Trapp CM, Censani M. Setmelanotide: a promising advancement for pediatric patients with rare forms of genetic obesity. Curr Opin Endocrinol Diabetes Obes. 2023;30(2):136–40. https://doi.org/10.1097/med.0000000000000798. Reviews the use of Setmelanotide treatment in children.

    Article  PubMed  PubMed Central  Google Scholar 

  15. AbouHashem N, Zaied RE, Al-Shafai K, Nofal M, Syed N, Al-Shafai M. The spectrum of genetic variants associated with the development of monogenic obesity in qatar. Obes Facts. 2022;15(3):357–65. https://doi.org/10.1159/000521851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Šket R, Kotnik P, Bizjan BJ, Kocen V, Mlinarič M, Tesovnik T, Debeljak M, Battelino T, Kovač J. Heterozygous genetic variants in autosomal recessive genes of the leptin-melanocortin signalling pathway are associated with the development of childhood obesity. Front Endocrinol (Lausanne). 2022;13:832911. https://doi.org/10.3389/fendo.2022.832911.

    Article  PubMed  Google Scholar 

  17. Roberts KJ, Ariza AJ, Selvaraj K, Quadri M, Mangarelli C, Neault S, Davis EE, Binns HJ. Testing for rare genetic causes of obesity: findings and experiences from a pediatric weight management program. Int J Obes (Lond). 2022;46(8):1493–501. https://doi.org/10.1038/s41366-022-01139-7.

    Article  CAS  PubMed  Google Scholar 

  18. Nalbantoğlu Ö, Hazan F, Acar S, Gürsoy S, Özkan B. Screening of non-syndromic early-onset child and adolescent obese patients in terms of LEP, LEPR, MC4R and POMC gene variants by next-generation sequencing. J Pediatr Endocrinol Metab. 2022;35(8):1041–50. https://doi.org/10.1515/jpem-2022-0027.

    Article  CAS  PubMed  Google Scholar 

  19. Tamaroff J, Williamson D, Slaughter JC, Xu M, Srivastava G, Shoemaker AH. Prevalence of genetic causes of obesity in clinical practice. Obes Sci Pract. 2023;9(5):508–15. https://doi.org/10.1002/osp4.671.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shi P, Shi Y, Liu X, Wang S, Yuan J, Zhao W, Fang L, Wang R, Yan F, Xu C. Identification and characteristics of novel mutations in nonsyndromic monogenic obesity. Adv Biol (Weinh). 2023;7(8):e2300061. https://doi.org/10.1002/adbi.202300061.

    Article  CAS  PubMed  Google Scholar 

  21. Roberts KJ, Chaves E, Ariza AJ, Thaker VV, Cho CC, Binns HJ. Exploring genetic testing for rare disorders of obesity: experience and perspectives of pediatric weight management providers. Child Obes. 2024. https://doi.org/10.1089/chi.2023.0125:10.1089/chi.2023.0125.

    Article  PubMed  Google Scholar 

  22. Keller M, Svensson SIA, Rohde-Zimmermann K, Kovacs P, Bottcher Y. Genetics and epigenetics in obesity: what do we know so far? Curr Obes Rep. 2023;12(4):482–501. https://doi.org/10.1007/s13679-023-00526-z.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carvalho LML, Jorge AAL, Bertola DR, Krepischi ACV, Rosenberg C. A comprehensive review of syndromic forms of obesity: genetic etiology, clinical features and molecular diagnosis. Curr Obes Rep. 2024. https://doi.org/10.1007/s13679-023-00543-y:10.1007/s13679-023-00543-y.

    Article  PubMed  Google Scholar 

  24. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32. https://doi.org/10.1038/372425a0.

    Article  CAS  PubMed  Google Scholar 

  25. Chua SC, Chung WK, WuPeng XS, Zhang YY, Liu SM, Tartaglia L, Leibel RL. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science. 1996;271(5251):994–6. https://doi.org/10.1126/science.271.5251.994.

    Article  CAS  PubMed  Google Scholar 

  26. Mahmoud R, Kimonis V, Butler MG. Genetics of obesity in humans: a clinical review. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms231911005.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Amaratunga SA, Tayeb TH, Dusatkova P, Pruhova S, Lebl J. Invaluable role of consanguinity in providing insight into paediatric endocrine conditions: lessons learnt from congenital hyperinsulinism, monogenic diabetes, and short stature. Horm Res Paediatr. 2022;95(1):1–11. https://doi.org/10.1159/000521210.

    Article  CAS  PubMed  Google Scholar 

  28. Han JC, Liu QR, Jones M, Levinn RL, Menzie CM, Jefferson-George KS, Adler-Wailes DC, Sanford EL, Lacbawan FL, Uhl GR, et al. Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med. 2008;359(9):918–27. https://doi.org/10.1056/NEJMoa0801119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sonoyama T, Stadler LKJ, Zhu M, Keogh JM, Henning E, Hisama F, Kirwan P, Jura M, Blaszczyk BK, DeWitt DC, et al. Human BDNF/TrkB variants impair hippocampal synaptogenesis and associate with neurobehavioural abnormalities. Sci Rep. 2020;10(1):9028. https://doi.org/10.1038/s41598-020-65531-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mendes de Oliveira E, Keogh JM, Talbot F, Henning E, Ahmed R, Perdikari A, Bounds R, Wasiluk N, Ayinampudi V, Barroso I, et al. Obesity-associated GNAS mutations and the melanocortin pathway. N Engl J Med. 2021;385(17):1581–92. https://doi.org/10.1056/NEJMoa2103329.

    Article  CAS  PubMed  Google Scholar 

  31. Perez KM, Curley KL, Slaughter JC, Shoemaker AH. Glucose homeostasis and energy balance in children with pseudohypoparathyroidism. J Clin Endocrinol Metab. 2018;103(11):4265–74. https://doi.org/10.1210/jc.2018-01067.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Roizen JD, Danzig J, Groleau V, McCormack S, Casella A, Harrington J, Sochett E, Tershakovec A, Zemel BS, Stallings VA, et al. Resting energy expenditure is decreased in pseudohypoparathyroidism type 1A. J Clin Endocrinol Metab. 2016;101(3):880–8. https://doi.org/10.1210/jc.2015-3895.

    Article  CAS  PubMed  Google Scholar 

  33. Shoemaker AH, Lomenick JP, Saville BR, Wang W, Buchowski MS, Cone RD. Energy expenditure in obese children with pseudohypoparathyroidism type 1a. Int J Obes (Lond). 2013;37(8):1147–53. https://doi.org/10.1038/ijo.2012.200.

    Article  CAS  PubMed  Google Scholar 

  34. • Asai M, Ramachandrappa S, Joachim M, Shen Y, Zhang R, Nuthalapati N, Ramanathan V, Strochlic DE, Ferket P, Linhart K, et al. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science. 2013;341(6143):275–8. https://doi.org/10.1126/science.1233000. Discovery of MRAP2 as a novel obesity gene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baron M, Maillet J, Huyvaert M, Dechaume A, Boutry R, Loiselle H, Durand E, Toussaint B, Vaillant E, Philippe J, et al. Loss-of-function mutations in MRAP2 are pathogenic in hyperphagic obesity with hyperglycemia and hypertension. Nat Med. 2019;25(11):1733–8. https://doi.org/10.1038/s41591-019-0622-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. • Bernard A, Ojeda Naharros I, Yue X, Mifsud F, Blake A, Bourgain-Guglielmetti F, Ciprin J, Zhang S, McDaid E, Kim K, et al. MRAP2 regulates energy homeostasis by promoting primary cilia localization of MC4R. JCI Insight. 2023. https://doi.org/10.1172/jci.insight.155900. Defines the function of MRAP2 that alters the binding of MC4R to the cilia. Paper also shows that MC4R binding to neuronal primary cilia is essential for the control of long-term energy homeostasis and suggests that genetic disruption of MC4R ciliary localization may frequently underlie inherited forms of obesity.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Keramati AR, Fathzadeh M, Go GW, Singh R, Choi M, Faramarzi S, Mane S, Kasaei M, Sarajzadeh-Fard K, Hwa J, et al. A form of the metabolic syndrome associated with mutations in DYRK1B. N Engl J Med. 2014;370(20):1909–19. https://doi.org/10.1056/NEJMoa1301824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mendoza-Caamal EC, Barajas-Olmos F, Mirzaeicheshmeh E, Ilizaliturri-Flores I, Aguilar-Salinas CA, Gomez-Velasco DV, Ciceron-Arellano I, Resendiz-Rodriguez A, Martinez-Hernandez A, Contreras-Cubas C, et al. Two novel variants in DYRK1B causative of AOMS3: expanding the clinical spectrum. Orphanet J Rare Dis. 2021;16(1):291. https://doi.org/10.1186/s13023-021-01924-z.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Folon L, Baron M, Scherrer V, Toussaint B, Vaillant E, Loiselle H, Dechaume A, De Pooter F, Boutry R, Boissel M, et al. Pathogenic, total loss-of-function DYRK1B variants cause monogenic obesity associated with type 2 diabetes. Diabetes Care. 2024. https://doi.org/10.2337/dc23-1851:10.2337/dc23-1851.

    Article  PubMed  Google Scholar 

  40. Brouwers B, de Oliveira EM, Marti-Solano M, Monteiro FBF, Laurin SA, Keogh JM, Henning E, Bounds R, Daly CA, Houston S, et al. Human MC4R variants affect endocytosis, trafficking and dimerization revealing multiple cellular mechanisms involved in weight regulation. Cell Rep. 2021;34(12): 108862. https://doi.org/10.1016/j.celrep.2021.108862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderson EJP, Ghamari-Langroudi M, Cakir I, Litt MJ, Chen V, Reggiardo RE, Millhauser GL, Cone RD. Late onset obesity in mice with targeted deletion of potassium inward rectifier Kir7.1 from cells expressing the melanocortin-4 receptor. J Neuroendocrinol. 2019;31(1):e12670. https://doi.org/10.1111/jne.12670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghamari-Langroudi M, Digby GJ, Sebag JA, Millhauser GL, Palomino R, Matthews R, Gillyard T, Panaro BL, Tough IR, Cox HM, et al. G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature. 2015;520(7545):94–8. https://doi.org/10.1038/nature14051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hernandez CC, Gimenez LE, Dahir NS, Peisley A, Cone RD. The unique structural characteristics of the Kir 7.1 inward rectifier potassium channel: a novel player in energy homeostasis control. Am J Physiol Cell Physiol. 2023;324(3):C694-c706. https://doi.org/10.1152/ajpcell.00335.2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lotta LA, Mokrosiński J, Mendes de Oliveira E, Li C, Sharp SJ, Luan J, Brouwers B, Ayinampudi V, Bowker N, Kerrison N, et al. Human gain-of-function MC4R variants show signaling bias and protect against obesity. Cell. 2019;177(3):597-607.e599. https://doi.org/10.1016/j.cell.2019.03.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chami N, Preuss M, Walker RW, Moscati A, Loos RJF. The role of polygenic susceptibility to obesity among carriers of pathogenic mutations in MC4R in the UK Biobank population. PLoS Med. 2020;17(7): e1003196. https://doi.org/10.1371/journal.pmed.1003196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wade KH, Lam BYH, Melvin A, Pan W, Corbin LJ, Hughes DA, Rainbow K, Chen JH, Duckett K, Liu X, et al. Loss-of-function mutations in the melanocortin 4 receptor in a UK birth cohort. Nat Med. 2021;27(6):1088–96. https://doi.org/10.1038/s41591-021-01349-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Trier C, Hollensted M, Schnurr TM, Lund MAV, Nielsen TRH, Rui G, Andersson EA, Svendstrup M, Bille DS, Gjesing AP, et al. Obesity treatment effect in Danish children and adolescents carrying Melanocortin-4 Receptor mutations. Int J Obes (Lond). 2021;45(1):66–76. https://doi.org/10.1038/s41366-020-00673-6.

    Article  CAS  PubMed  Google Scholar 

  48. Lim JG, Moh A, Pandian B, Ubeynarayana CU, Lim NG, Tan BC, Ng D, Subramaniam T, Cheng A, Lim SC. Short-term weight trajectory of severely obese individuals with and without pathogenic satiety-regulation melanocortin 3/4 receptor (MC3/4R) mutations from a multi-ethnic asian large bariatric surgery program. J Investig Med High Impact Case Rep. 2023;11:23247096231168108. https://doi.org/10.1177/23247096231168108.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Gong Y, Wu Q, Huang S, Fu Z, Ye J, Liu R, Lin S, Guan W, Yang N, Li JZ, et al. Functional characterization of MC4R variants in chinese morbid obese patients and weight loss after bariatric surgery. Adv Biol (Weinh). 2023;7(9):e2300007. https://doi.org/10.1002/adbi.202300007. Demonstrates the effectiveness of bariatric surgery in patients with obesity from MC4R variants.

    Article  CAS  PubMed  Google Scholar 

  50. Salazar-Valencia IG, Villamil-Ramírez H, Barajas-Olmos F, Guevara-Cruz M, Macias-Kauffer LR, García-Ortiz H, Hernández-Vergara O, Díaz de Sandy-Galán DA, León-Mimila P, Centeno-Cruz F, et al. Effect of the melanocortin 4-receptor Ile269Asn mutation on weight loss response to dietary phentermine and bariatric surgery interventions. Genes (Basel). 2022. https://doi.org/10.3390/genes13122267.

    Article  PubMed  Google Scholar 

  51. •• Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30. Detailed guidance on assigning pathogenicity to genetic variants.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shah BP, Sleiman PM, Mc Donald J, Moeller IH, Kleyn P. Functional characterization of all missense variants in LEPR, PCSK1, and POMC genes arising from single-nucleotide variants. Expert Rev Endocrinol Metab. 2023;18(2):209–19. https://doi.org/10.1080/17446651.2023.2179985.

    Article  CAS  PubMed  Google Scholar 

  53. Bamshad M, Le T, Watkins WS, Dixon ME, Kramer BE, Roeder AD, Carey JC, Root S, Schinzel A, Van Maldergem L, et al. The spectrum of mutations in TBX3: Genotype/Phenotype relationship in ulnar-mammary syndrome. Am J Hum Genet. 1999;64(6):1550–62. https://doi.org/10.1086/302417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Quarta C, Fisette A, Xu Y, Colldén G, Legutko B, Tseng YT, Reim A, Wierer M, De Rosa MC, Klaus V, et al. Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nat Metab. 2019;1(2):222–35. https://doi.org/10.1038/s42255-018-0028-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zeltser LM. Axon guidance molecules implicated in early-onset obesity. Trends Neurosci. 2019;42(7):439–40. https://doi.org/10.1016/j.tins.2019.03.005.

    Article  CAS  PubMed  Google Scholar 

  56. • van der Klaauw AA, Croizier S, Mendes de Oliveira E, Stadler LKJ, Park S, Kong Y, Banton MC, Tandon P, Hendricks AE, Keogh JM, et al. Human semaphorin 3 variants link melanocortin circuit development and energy balance. Cell. 2019;176(4):729–42. https://doi.org/10.1016/j.cell.2018.12.009. Discovery of semaphorin pathway in context of obesity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang Y, van der Klaauw AA, Zhu L, Cacciottolo TM, He Y, Stadler LKJ, Wang C, Xu P, Saito K, Hinton A Jr, et al. Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis. Nat Commun. 2019;10(1):1718. https://doi.org/10.1038/s41467-019-08737-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Cacciottolo TM, Henning E, Keogh JM, Bel Lassen P, Lawler K, Bounds R, Ahmed R, Perdikari A, Mendes de Oliveira E, Smith M, et al. Obesity due to steroid receptor coactivator-1 deficiency is associated with endocrine and metabolic abnormalities. J Clin Endocrinol Metab. 2022;107(6):e2532–44. https://doi.org/10.1210/clinem/dgac067. Characterizes SRC1 mutation obesity, providing a clinical spetrum and how they respond to setmelanotide.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Berglund ED, Liu C, Sohn JW, Liu T, Kim MH, Lee CE, Vianna CR, Williams KW, Xu Y, Elmquist JK. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis. J Clin Invest. 2013;123(12):5061–70. https://doi.org/10.1172/JCI70338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He Y, Brouwers B, Liu H, Liu H, Lawler K, Mendes de Oliveira E, Lee DK, Yang Y, Cox AR, Keogh JM, et al. Human loss-of-function variants in the serotonin 2C receptor associated with obesity and maladaptive behavior. Nat Med. 2022;28(12):2537–46. https://doi.org/10.1038/s41591-022-02106-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dodd GT, Luckman SM. Physiological Roles of GPR10 and PrRP Signaling. Front Endocrinol (Lausanne). 2013;4:20. https://doi.org/10.3389/fendo.2013.00020.

    Article  PubMed  Google Scholar 

  62. Talbot F, Feetham CH, Mokrosiński J, Lawler K, Keogh JM, Henning E, Mendes de Oliveira E, Ayinampudi V, Saeed S, Bonnefond A, et al. A rare human variant that disrupts GPR10 signalling causes weight gain in mice. Nat Commun. 2023;14(1):1450. https://doi.org/10.1038/s41467-023-36966-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. • Zhu N, LeDuc CA, Fennoy I, Laferrère B, Doege CA, Shen Y, Chung WK, Leibel RL. Rare predicted loss of function alleles in Bassoon (BSN) are associated with obesity. NPJ Genom Med. 2023;8(1):33. https://doi.org/10.1038/s41525-023-00376-7. Discovery of a new gene for obesity, BSN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Craddock KE, Okur V, Wilson A, Gerkes EH, Ramsey K, Heeley JM, Juusola J, Vitobello A, Dupeyron MB, Faivre L, et al. Clinical and genetic characterization of individuals with predicted deleterious PHIP variants. Cold Spring Harb Mol Case Stud. 2019. https://doi.org/10.1101/mcs.a004200.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jansen S, Hoischen A, Coe BP, Carvill GL, Van Esch H, Bosch DGM, Andersen UA, Baker C, Bauters M, Bernier RA, et al. A genotype-first approach identifies an intellectual disability-overweight syndrome caused by PHIP haploinsufficiency. Eur J Hum Genet. 2018;26(1):54–63. https://doi.org/10.1038/s41431-017-0039-5.

    Article  CAS  PubMed  Google Scholar 

  66. Webster E, Cho MT, Alexander N, Desai S, Naidu S, Bekheirnia MR, Lewis A, Retterer K, Juusola J, Chung WK. De novo PHIP-predicted deleterious variants are associated with developmental delay, intellectual disability, obesity, and dysmorphic features. Cold Spring Harb Mol Case Stud. 2016;2(6): a001172. https://doi.org/10.1101/mcs.a001172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marenne G, Hendricks AE, Perdikari A, Bounds R, Payne F, Keogh JM, Lelliott CJ, Henning E, Pathan S, Ashford S, et al. Exome sequencing identifies genes and gene sets contributing to severe childhood obesity, linking PHIP variants to repressed POMC transcription. Cell Metab. 2020;31(6):1107-1119 e1112. https://doi.org/10.1016/j.cmet.2020.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. • Sudnawa KK, Calamia S, Geltzeiler A, Chung WK. Clinical phenotypes of individuals with Chung-Jansen syndrome across age groups. Am J Med Genet A. 2024;194(3):e63471. https://doi.org/10.1002/ajmg.a.63471. Clinical characterization of PHIP mutations, a syndromic form of obesity.

    Article  PubMed  Google Scholar 

  69. Conti B, Rinaldi B, Rimoldi M, Villa R, Iascone M, Gangi S, Porro M, Ajmone PF, Colli AM, Mosca F, et al. Chung-jansen syndrome can mimic cornelia de lange syndrome: another player among chromatinopathies? Am J Med Genet A. 2023;191(6):1586–92. https://doi.org/10.1002/ajmg.a.63164.

    Article  CAS  PubMed  Google Scholar 

  70. Kampmeier A, Leitao E, Parenti I, Beygo J, Depienne C, Bramswig NC, Hsieh TC, Afenjar A, Beck-Wodl S, Grasshoff U, et al. PHIP-associated chung-jansen syndrome: report of 23 new individuals. Front Cell Dev Biol. 2022;10:1020609. https://doi.org/10.3389/fcell.2022.1020609.

    Article  PubMed  Google Scholar 

  71. Rhythm Pharmaceuticals. Rhythm pharmaceuticals announces updates on MC4R pathway programs at R&D event. 2023. https://ir.rhythmtx.com/news-releases/news-release-details/rhythm-pharmaceuticals-announces-updates-mc4r-pathway-programs. Accessed 20 Jan 2024.

  72. Akbari P, Gilani A, Sosina O, Kosmicki JA, Khrimian L, Fang YY, Persaud T, Garcia V, Sun D, Li A, et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science. 2021. https://doi.org/10.1126/science.abf8683.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Funcke JB, Moepps B, Roos J, von Schnurbein J, Verstraete K, Fröhlich-Reiterer E, Kohlsdorf K, Nunziata A, Brandt S, Tsirigotaki A, et al. Rare antagonistic leptin variants and severe. Early-Onset Obesity N Engl J Med. 2023;388(24):2253–61. https://doi.org/10.1056/NEJMoa2204041.

    Article  CAS  PubMed  Google Scholar 

  74. Saeed S, Arslan M, Manzoor J, Din SM, Janjua QM, Ayesha H, Ain QT, Inam L, Lobbens S, Vaillant E, et al. Genetic causes of severe childhood obesity: a remarkably high prevalence in an inbred population of pakistan. Diabetes. 2020;69(7):1424–38. https://doi.org/10.2337/db19-1238.

    Article  PubMed  Google Scholar 

  75. • Saeed S, Khanam R, Janjua QM, Manzoor J, Ning L, Hanook S, Canouil M, Ali M, Ayesha H, Khan WI, et al. High morbidity and mortality in children with untreated congenital deficiency of leptin or its receptor. Cell Rep Med. 2023;4(9):101187. https://doi.org/10.1016/j.xcrm.2023.101187. Emphasizes the morbidity and mortality from untreated genetic obesity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saeed S, Janjua QM, Haseeb A, Khanam R, Durand E, Vaillant E, Ning L, Badreddine A, Berberian L, Boissel M, et al. Rare variant analysis of obesity-associated genes in young adults with severe obesity from a consanguineous population of pakistan. Diabetes. 2022;71(4):694–705. https://doi.org/10.2337/db21-0373.

    Article  CAS  PubMed  Google Scholar 

  77. Vogel P, Ding ZM, Read R, DaCosta CM, Hansard M, Small DL, Ye GL, Hansen G, Brommage R, Powell DR. Progressive degenerative myopathy and myosteatosis in ASNSD1-deficient mice. Vet Pathol. 2020;57(5):723–35. https://doi.org/10.1177/0300985820939251.

    Article  CAS  PubMed  Google Scholar 

  78. Stadion M, Schwerbel K, Graja A, Baumeier C, Rodiger M, Jonas W, Wolfrum C, Staiger H, Fritsche A, Haring HU, et al. Increased Ifi202b/IFI16 expression stimulates adipogenesis in mice and humans. Diabetologia. 2018;61(5):1167–79. https://doi.org/10.1007/s00125-018-4571-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. • Saeed S, Ning L, Badreddine A, Mirza MU, Boissel M, Khanam R, Manzoor J, Janjua QM, Khan WI, Toussaint B, et al. Biallelic mutations in P4HTM cause syndromic obesity. Diabetes. 2023;72(9):1228–34. https://doi.org/10.2337/db22-1017. Discovery of novel gene, P4HTM, causing obesity.

    Article  CAS  PubMed  Google Scholar 

  80. •• Styne DM, Arslanian SA, Connor EL, Farooqi IS, Murad MH, Silverstein JH, Yanovski JA. Pediatric obesity-assessment, treatment, and prevention: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2017;102(3):709–57. https://doi.org/10.1210/jc.2016-2573. Clinical practice guidelines advocating for genetic testing in specific cases.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, Nadolsky K, Pessah-Pollack R, Plodkowski R. Reviewers of the AACEOCPG: american association of clinical endocrinologists and american college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016;22(Suppl 3):1–203. https://doi.org/10.4158/EP161365.GL.

    Article  PubMed  Google Scholar 

  82. Cuda S, Censani M, Kharofa R, Williams DR, O’Hara V, Karjoo S, Paisley J, Browne NT. Social consequences and genetics for the child with overweight and obesity: An obesity medicine association (OMA) clinical practice statement 2022. Obes Pillars. 2022;3: 100032. https://doi.org/10.1016/j.obpill.2022.100032.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Heymsfield SB, Avena NM, Baier L, Brantley P, Bray GA, Burnett LC, Butler MG, Driscoll DJ, Egli D, Elmquist J, et al. Hyperphagia: current concepts and future directions proceedings of the 2nd international conference on hyperphagia. Obesity (Silver Spring). 2014;22(Suppl 1):S1–17. https://doi.org/10.1002/oby.20646.

    Article  PubMed  Google Scholar 

  84. Dykens EM, Maxwell MA, Pantino E, Kossler R, Roof E. Assessment of hyperphagia in prader-willi syndrome. Obesity (Silver Spring). 2007;15(7):1816–26. https://doi.org/10.1038/oby.2007.216.

    Article  PubMed  Google Scholar 

  85. Stunkard AJ, Messick S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res. 1985;29(1):71–83. https://doi.org/10.1016/0022-3999(85)90010-8.

    Article  CAS  PubMed  Google Scholar 

  86. Lowe MR, Butryn ML, Didie ER, Annunziato RA, Thomas JG, Crerand CE, Ochner CN, Coletta MC, Bellace D, Wallaert M, et al. The power of food scale. A new measure of the psychological influence of the food environment. Appetite. 2009;53(1):114–8. https://doi.org/10.1016/j.appet.2009.05.016.

    Article  PubMed  Google Scholar 

  87. van Strien T, Frijters JER, Bergers GPA, Defares PB. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int J Eat Disord. 1986;5(2):295–315. https://doi.org/10.1002/1098-108x(198602)5:2%3c295::Aid-eat2260050209%3e3.0.Co;2-t.

    Article  Google Scholar 

  88. van Strien T, Oosterveld P. The children���s DEBQ for assessment of restrained, emotional, and external eating in 7- to 12-year-old children. Int J Eat Disord. 2008;41(1):72–81. https://doi.org/10.1002/eat.20424.

    Article  PubMed  Google Scholar 

  89. Kehinde TA, Bhatia A, Olarewaju B, Shoaib MZ, Mousa J, Osundiji MA. Syndromic obesity with neurodevelopmental delay: Opportunities for targeted interventions. Eur J Med Genet. 2022;65(3): 104443. https://doi.org/10.1016/j.ejmg.2022.104443.

    Article  CAS  PubMed  Google Scholar 

  90. Kernohan KD, Boycott KM. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet. 2024. https://doi.org/10.1038/s41576-023-00683-w:10.1038/s41576-023-00683-w.

    Article  PubMed  Google Scholar 

  91. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O’Rahilly S. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341(12):879–84. https://doi.org/10.1056/NEJM199909163411204.

    Article  CAS  PubMed  Google Scholar 

  92. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS, Astruc B, Mayer JP, Brage S, See TC, et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. 2009;360(1):44–52. https://doi.org/10.1056/NEJMoa0803085.

    Article  CAS  PubMed  Google Scholar 

  93. Krishna R, Gumbiner B, Stevens C, Musser B, Mallick M, Suryawanshi S, Maganti L, Zhu H, Han TH, Scherer L, et al. Potent and selective agonism of the melanocortin receptor 4 with MK-0493 does not induce weight loss in obese human subjects: energy intake predicts lack of weight loss efficacy. Clin Pharmacol Ther. 2009;86(6):659–66. https://doi.org/10.1038/clpt.2009.167.

    Article  CAS  PubMed  Google Scholar 

  94. Falls BA, Zhang Y. Insights into the allosteric mechanism of setmelanotide (RM-493) as a potent and first-in-class melanocortin-4 receptor (MC4R) agonist to treat rare genetic disorders of obesity through an in silico approach. ACS Chem Neurosci. 2018. https://doi.org/10.1021/acschemneuro.8b00346:10.1021/acschemneuro.8b00346.

    Article  PubMed  Google Scholar 

  95. Kuhnen P, Clement K, Wiegand S, Blankenstein O, Gottesdiener K, Martini LL, Mai K, Blume-Peytavi U, Gruters A, Krude H. Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist. N Engl J Med. 2016;375(3):240–6. https://doi.org/10.1056/NEJMoa1512693.

    Article  CAS  PubMed  Google Scholar 

  96. Clément K, van den Akker E, Argente J, Bahm A, Chung WK, Connors H, De Waele K, Farooqi IS, Gonneau-Lejeune J, Gordon G, et al. Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol. 2020;8(12):960–70. https://doi.org/10.1016/s2213-8587(20)30364-8.

    Article  CAS  PubMed  Google Scholar 

  97. Haws R, Brady S, Davis E, Fletty K, Yuan G, Gordon G, Stewart M, Yanovski J. Effect of setmelanotide, a melanocortin-4 receptor agonist, on obesity in bardet-biedl syndrome. Diabetes Obes Metab. 2020;22(11):2133–40. https://doi.org/10.1111/dom.14133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. U.S. Food & Drug Administration. FDA approves treatment for weight management in patients with Bardet-Biedl Syndrome aged 6 or older. 2022. https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-weight-management-patients-bardet-biedl-syndrome-aged-6-or-older. Accessed 15 Jan 2024.

  99. Rhythm Pharmaceuticals. Rhythm corporate presentation. 2024. https://rhythmpharmaceuticals.gcs-web.com/static-files/a73413bd-e901-4c70-bfd0-56060b2a5b7b. Accessed 30 Mar 2024.

  100. Cooiman MI, Kleinendorst L, Aarts EO, Janssen IMC, van Amstel HKP, Blakemore AI, Hazebroek EJ, Meijers-Heijboer HJ, van der Zwaag B, Berends FJ, et al. Genetic Obesity and Bariatric Surgery Outcome in 1014 Patients with Morbid Obesity. Obes Surg. 2020;30(2):470–7. https://doi.org/10.1007/s11695-019-04184-w.

    Article  CAS  PubMed  Google Scholar 

  101. Campos A, Cifuentes L, Hashem A, Busebee B, Hurtado-Andrade MD, Ricardo-Silgado ML, McRae A, De la Rosa A, Feris F, Bublitz JT, et al. Effects of Heterozygous Variants in the Leptin-Melanocortin Pathway on Roux-en-Y Gastric Bypass Outcomes: a 15-Year Case-Control Study. Obes Surg. 2022;32(8):2632–40. https://doi.org/10.1007/s11695-022-06122-9.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Samuels JM, Paddu NU, Rekulapeli A, Madhar A, Srivastava G. High prevalence of positive genetic obesity variants in postoperative bariatric surgery patients with weight regain presenting for medical obesity intervention. Obes Surg. 2024;34(1):170–5. https://doi.org/10.1007/s11695-023-06952-1.

    Article  PubMed  Google Scholar 

  103. Iepsen EW, Zhang J, Thomsen HS, Hansen EL, Hollensted M, Madsbad S, Hansen T, Holst JJ, Holm JC, Torekov SS. Patients with obesity caused by melanocortin-4 receptor mutations can be treated with a glucagon-like peptide-1 receptor agonist. Cell Metab. 2018;28(1):23-32.e23. https://doi.org/10.1016/j.cmet.2018.05.008.

    Article  CAS  PubMed  Google Scholar 

  104. •• Ali S, Baig S, Wanninayake S, da Silva XG, Dawson C, Paisey R, Geberhiwot T. Glucagon-like peptide-1 analogues in monogenic syndromic obesity: Real-world data from a large cohort of Alström syndrome patients. Diabetes Obes Metab. 2024;26(3):989–96. https://doi.org/10.1111/dom.15398. GLP1 analogs in use in a specific genetic obesity.

    Article  CAS  PubMed  Google Scholar 

  105. Welling MS, de Groot CJ, Kleinendorst L, van der Voorn B, Burgerhart JS, van der Valk ES, van Haelst MM, van den Akker ELT, van Rossum EFC. Effects of glucagon-like peptide-1 analogue treatment in genetic obesity: A case series. Clin Obes. 2021;11(6): e12481. https://doi.org/10.1111/cob.12481.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ng NBH, Low YW, Rajgor DD, Low JM, Lim YY, Loke KY, Lee YS. The effects of glucagon-like peptide (GLP)-1 receptor agonists on weight and glycaemic control in Prader-Willi syndrome: A systematic review. Clin Endocrinol (Oxf). 2022;96(2):144–54. https://doi.org/10.1111/cen.14583.

    Article  CAS  PubMed  Google Scholar 

  107. Romanelli SM, Lewis KT, Nishii A, Rupp AC, Li Z, Mori H, Schill RL, Learman BS, Rhodes CJ, MacDougald OA. BAd-CRISPR: Inducible gene knockout in interscapular brown adipose tissue of adult mice. J Biol Chem. 2021;297(6): 101402. https://doi.org/10.1016/j.jbc.2021.101402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang CH, Lundh M, Fu A, Kriszt R, Huang TL, Lynes MD, Leiria LO, Shamsi F, Darcy J, Greenwood BP, et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med. 2020. https://doi.org/10.1126/scitranslmed.aaz8664.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Raichur S, Wang ST, Chan PW, Li Y, Ching J, Chaurasia B, Dogra S, Öhman MK, Takeda K, Sugii S, et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 2014;20(4):687–95. https://doi.org/10.1016/j.cmet.2014.09.015.

    Article  CAS  PubMed  Google Scholar 

  110. Turpin SM, Nicholls HT, Willmes DM, Mourier A, Brodesser S, Wunderlich CM, Mauer J, Xu E, Hammerschmidt P, Brönneke HS, et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014;20(4):678–86. https://doi.org/10.1016/j.cmet.2014.08.002.

    Article  CAS  PubMed  Google Scholar 

  111. Raichur S, Brunner B, Bielohuby M, Hansen G, Pfenninger A, Wang B, Bruning JC, Larsen PJ, Tennagels N. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol Metab. 2019;21:36–50. https://doi.org/10.1016/j.molmet.2018.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sáenz de Urturi D, Buqué X, Porteiro B, Folgueira C, Mora A, Delgado TC, Prieto-Fernández E, Olaizola P, Gómez-Santos B, Apodaka-Biguri M, et al. Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis. Nat Commun. 2022;13(1):1096. https://doi.org/10.1038/s41467-022-28749-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. • Lutkewitte AJ, Singer JM, Shew TM, Martino MR, Hall AM, He M, Finck BN. Multiple antisense oligonucleotides targeted against monoacylglycerol acyltransferase 1 (Mogat1) improve glucose metabolism independently of Mogat1. Mol Metab. 2021;49:101204. https://doi.org/10.1016/j.molmet.2021.101204. Demonstrates the potential of ASO therapy for obesity complications.

  114. Gwag T, Li D, Ma E, Guo Z, Liang Y, Wang S. CD47 antisense oligonucleotide treatment attenuates obesity and its-associated metabolic dysfunction. Sci Rep. 2023;13(1):2748. https://doi.org/10.1038/s41598-023-30006-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vatner DF, Goedeke L, Camporez JG, Lyu K, Nasiri AR, Zhang D, Bhanot S, Murray SF, Still CD, Gerhard GS, et al. Angptl8 antisense oligonucleotide improves adipose lipid metabolism and prevents diet-induced NAFLD and hepatic insulin resistance in rodents. Diabetologia. 2018;61(6):1435–46. https://doi.org/10.1007/s00125-018-4579-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yu XX, Murray SF, Pandey SK, Booten SL, Bao D, Song XZ, Kelly S, Chen S, McKay R, Monia BP, et al. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology (Baltimore, MD). 2005;42(2):362–71. https://doi.org/10.1002/hep.20783.

    Article  CAS  PubMed  Google Scholar 

  117. Parker BL, Calkin AC, Seldin MM, Keating MF, Tarling EJ, Yang P, Moody SC, Liu Y, Zerenturk EJ, Needham EJ, et al. An integrative systems genetic analysis of mammalian lipid metabolism. Nature. 2019;567(7747):187–93. https://doi.org/10.1038/s41586-019-0984-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Recio-López P, Valladolid-Acebes I, Berggren PO, Juntti-Berggren L. Apolipoprotein CIII reduction protects white adipose tissues against obesity-induced inflammation and insulin resistance in mice. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms23010062.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported in part by NIH-NIDDK K23 DK110539, Pilot and Feasibility Grant, the New York Obesity and Nutrition Research Center, NIH-NIDDK P30 DK26687, and Louis V. Gerstner Scholar Program at Columbia University Irving Medical Center to VVT. CAL is supported in part by funding from the NIH-NIDDK R01 DK52431 and ASPIRE Pfizer Obesity Research Grant.

Author information

Authors and Affiliations

Authors

Contributions

M.V. Z., C.A.L. and V.V.T wrote the main manuscript text. M.V. Z. prepared the figure, V.V.T prepared the tables. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Vidhu V. Thaker.

Ethics declarations

Ethics Statement

Not applicable.

Disclosure Summary

VVT participates in clinical trials for genetic obesity sponsored by Rhythm Pharmaceuticals. MVZ and CAL have nothing to disclose.

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuccaro, M.V., LeDuc, C.A. & Thaker, V.V. Updates on Rare Genetic Variants, Genetic Testing, and Gene Therapy in Individuals With Obesity. Curr Obes Rep (2024). https://doi.org/10.1007/s13679-024-00567-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13679-024-00567-y

Keywords

Navigation