Skip to main content

Advertisement

Log in

Amazonian Fruits for Treatment of Non-Communicable Diseases

  • REVIEW
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The Amazon region has a high biodiversity of flora, with an elevated variety of fruits, such as Camu-Camu (Myrciaria dúbia), Açaí (Euterpe oleracea Mart.), Tucumã (Astrocaryum aculeatum and Astrocaryum vulgare), Fruta-do-conde (Annona squamosa L.), Cupuaçu (Theobroma grandiflorum), Graviola (Annona muricata L.), Guarana (Paullinia cupana Kunth var. sorbilis), and Pitanga (Eugenia uniflora), among many others, that are rich in phytochemicals, minerals and vitamins with prominent antioxidant and anti-inflammatory potential.

Recent Findings

Studies evaluating the chemical composition of these fruits have observed a high content of nutrients and bioactive compounds. Such components are associated with significant biological effects in treating various non-communicable diseases (NCDs) and related complications.

Summary

Regular intake of these fruits from Amazonas emerges as a potential therapeutic approach to preventing and treating NCDs as a nutritional strategy to reduce the incidence or mitigate common complications in these patients, which are the leading global causes of death. As studies remain largely unexplored, this narrative review discusses the possible health-beneficial effects for patients with NCDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Enck BF, Campos MCC, Pereira MG, de Souza FG, Santos OAQ, Diniz YV de FG, et al. Forest–Fruticulture Conversion Alters Soil Traits and Soil Organic Matter Compartments. Plants. 2022;11(21).

  2. Nunes C, Berenguer E, França F, Ferreira J, Lees A, Louzada J, et al. Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proc Natl Acad Sci U S A [Internet]. 2023;119(27):e2202310119. Available from: https://www.pnas.org/doi/suppl/10.1073/pnas.2202310119.

  3. Albert JS, Carnaval AC, Flantua SGA, Lohmann LG, Ribas CC, Riff D, et al. Human impacts outpace natural processes in the Amazon. Science [Internet]. 2023 [cited 2023 Nov 28];379(6630). Available from: https://pubmed.ncbi.nlm.nih.gov/36701466/.

  4. Barros MF, Jardim MAG, Soares VFS, Menezes PMM, Vieira ICG, Tabarelli M. Açaí palm intensication and the reorganization of woody plant assemblages at multiple spatial scales in an Amazonian estuarine forest. Res Sq [Internet]. 2023; Available from: https://doi.org/10.21203/rs.3.rs-2496590/v1.

  5. Almeida CORP, Martinez RM, Figueiredo MS, Teodoro AJ. Botanical nutritional, phytochemical characteristics, and potential health benefits of murici (Byrsonima crassifolia) and taperebá (Spondias mombin): insights from animal and cell culture models. Nutr Rev [Internet]. 2023 Jun 22 cited 2023 Sep 23. Available from: https://doi.org/10.1093/nutrit/nuad065.

  6. Araujo NMP, Arruda HS, Marques DRP, de Oliveira WQ, Pereira GA, Pastore GM. Functional and nutritional properties of selected Amazon fruits: A review. Food Res Int. 2021;1:147.

    Google Scholar 

  7. Miranda JJ, Barrientos-Gutiérrez T, Corvalan C, Hyder AA, Lazo-Porras M, Oni T, et al. Understanding the rise of cardiometabolic diseases in low- and middle-income countries. Vol. 25, Nature Medicine. Nature Publishing Group; 2019;1667–79.

  8. Qiao J, Lin X, Wu Y, Huang X, Pan X, Xu J, et al. Global burden of non-communicable diseases attributable to dietary risks in 1990–2019. J Hum Nutr Diet. 2022;35(1):202–13.

    Article  PubMed  Google Scholar 

  9. WHO. GLOBAL STATUS REPORT on noncommunicable diseases 2014 “Attaining the nine global noncommunicable diseases targets; a shared responsibility.” 2014.

  10. Shiels PG, Painer J, Natterson-Horowitz B, Johnson RJ, Miranda JJ, Stenvinkel P. Manipulating the exposome to enable better ageing. Biochem J [Internet]. 2021 [cited 2023 Oct 3];478(14):2889. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331090/.

  11. Jamaluddine Z, Sibai AM, Othman S, Yazbek S. Mapping genetic research in non-communicable disease publications in selected Arab countries: First step towards a guided research agenda. Health Res Policy Syst [Internet]. 2016 [cited 2024 May 11];14(1):1–8. Available from: https://link.springer.com/articles/10.1186/s12961-016-0153-9.

  12. Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, et al. High-fat, western-style diet, systemic inflammation, and gut microbiota: A narrative review. Cells. MDPI; 2021;10.

  13. Nediani C, Giovannelli L. Oxidative stress and inflammation as targets for novel preventive and therapeutic approches in non communicable diseases. Antioxidants. MDPI; 2020;9.

  14. Kyu HH, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1859–922.

    Article  Google Scholar 

  15. WHO. Noncommunicable diseases. 2022.

  16. Malta DC, França E, Abreu DMX, Perillo RD, Salmen MC, Teixeira RA, et al. Mortality due to noncommunicable diseases in Brazil, 1990 to 2015, according to estimates from the Global Burden of Disease study. Sao Paulo Med J [Internet]. 2017 [cited 2023 Aug 24];135(3):213–21. Available from: https://www.scielo.br/j/spmj/a/bcyFczyz8wcNYj5WRWgC8kk/.

  17. Mafra D, Borges NA, Lindholm B, Shiels PG, Evenepoel P, Stenvinkel P. Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nat Rev Nephrol [Internet]. 2021;17(3):153–71. Available from: https://doi.org/10.1038/s41581-020-00345-8.

  18. Al-Jawaldeh A, Abbass MMS. Unhealthy Dietary Habits and Obesity: The Major Risk Factors Beyond Non-Communicable Diseases in the Eastern Mediterranean Region. Front Nutr. 2022;16(9): 817808.

    Article  Google Scholar 

  19. Ribeiro PV de M, Andrade PA, Hermsdorff HHM, dos Santos CA, Cotta RMM, Estanislau J de ASG, et al. Dietary non-nutrients in the prevention of non-communicable diseases: Potentially related mechanisms. Nutrition [Internet]. 2019 [cited 2023 Aug 25];66:22–8. Available from: https://pubmed.ncbi.nlm.nih.gov/31200299/.

  20. Samtiya M, Aluko RE, Dhewa T, Moreno-Rojas JM. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods [Internet]. 2021 [cited 2023 Aug 25];10(4). Available from: https://pubmed.ncbi.nlm.nih.gov/33921351/.

  21. Vásquez-Reyes S, Velázquez-Villegas LA, Vargas-Castillo A, Noriega LG, Torres N, Tovar AR. Dietary bioactive compounds as modulators of mitochondrial function. J Nutr Biochem [Internet]. 2021 [cited 2023 Aug 25];96. Available from: https://pubmed.ncbi.nlm.nih.gov/34000412/.

  22. Câmara JS, Albuquerque BR, Aguiar J, Corrêa RCG, Gonçalves JL, Granato D, et al. Food bioactive compounds and emerging techniques for their extraction: Polyphenols as a case study. Foods. MDPI AG; 2021;10.

  23. Neves LC, de Campos AJ, Benedette RM, Tosin JM, Chagas EA. Characterization of the antioxidant capacity of natives fruits from the Brazilian Amazon Region. Rev Bras Frutic [Internet]. 2012 [cited 2023 Aug 25];34(4):1165–73. Available from: https://www.scielo.br/j/rbf/a/zJG559jcXJKgmg9RRvXvQkv/abstract/?lang=en.

  24. Assmann CE, Weis GCC, da Rosa JR, Bonadiman B da SR, Alves A de O, Schetinger MRC, et al. Amazon-derived nutraceuticals: Promises to mitigate chronic inflammatory states and neuroinflammation. Neurochem Int. 2021;148.

  25. Manica-Cattani MF, Hoefel AL, Azzolin VF, Montano MAE, da Cruz Jung IE, Ribeiro EE, et al. Amazonian fruits with potential effects on COVID-19 by inflammaging modulation: A narrative review. J Food Biochemi. John Wiley and Sons Inc; 2022;46.

  26. Moratilla-Rivera I, Sánchez M, Valdés-González JA, Gómez-Serranillos MP. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int J Mol Sci [Internet]. 2023 [cited 2023 Oct 3];24(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967135/.

  27. Food as medicine: translating the evidence. Nat Med. Nature Research; 2023;29:753–4.

  28. Vianna S. Euterpe in Flora e Funga do Brasil. 2023.

  29. Lopes R, Da Cunha RNV, Tavares M dos S, Raizer MDM, Dos Santos CA, Da Silva EJD, et al. Seasonality of fruit production of Euterpe oleracea and E. precatoria açaí palm trees cultivated in the metropolitan region of Manaus (AM). REVISTA AGRO@MBIENTE ON-LINE. 2022;16:1–14.

  30. Zhou J, Zhang J, Wang C, Qu S, Zhu Y, Yang Z, et al. Açaí (Euterpe oleracea Mart.) attenuates alcohol-inducedliver injury in rats by alleviating oxidative stress and inflammatory response. Exp Ther Med. 2018;15(1):166–72.

  31. dos Santos NM, Batista ÂG, Padilha Mendonça MC, Figueiredo Angolini CF, Grimaldi R, Pastore GM, et al. Açai pulp improves cognition and insulin sensitivity in obese mice. Nutr Neurosci. 2023.

  32. Chang SK, Alasalvar C, Shahidi F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects–A comprehensive review. Crit Rev Food Sci Nutr. Taylor and Francis Inc.; 2019;59:1580–604.

  33. e Souza BSF, Carvalho HO, Ferreira IM, da Cunha EL, Barros AS, Taglialegna T, et al. Effect of the treatment with Euterpe oleracea Mart. oil in rats with Triton-induced dyslipidemia. Biomed Pharmacother. 2017;90:542–7.

    Article  PubMed  Google Scholar 

  34. Cadoná FC, de Souza DV, Fontana T, Bodenstein DF, Ramos AP, Sagrillo MR, et al. Açaí (Euterpe oleracea Mart.) as a Potential Anti-neuroinflammatory Agent: NLRP3 Priming and Activating Signal Pathway Modulation. Mol Neurobiol. 2021;58(9):4460–76.

    Article  PubMed  Google Scholar 

  35. Poulose SM, Fisher DR, Larson J, Bielinski DF, Rimando AM, Carey AN, et al. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J Agric Food Chem. 2012;60(4):1084–93.

    Article  CAS  PubMed  Google Scholar 

  36. El Morsy EM, Ahmed MAE, Ahmed AAE. Attenuation of renal ischemia/reperfusion injury by açaí extract preconditioning in a rat model. Life Sci [Internet]. 2015 [cited 2023 Oct 11];123:35–42. Available from: https://pubmed.ncbi.nlm.nih.gov/25476829/.

  37. Unis A. Açai berry extract attenuates glycerol-induced acute renal failure in rats. Ren Fail. 2015;37(2):310–7.

    Article  PubMed  Google Scholar 

  38. Song H, Shen X, Deng R, Zhang Y, Zheng X. Dietary anthocyanin-rich extract of açai protects from diet-induced obesity, liver steatosis, and insulin resistance with modulation of gut microbiota in mice. Nutrition. 2021;1:86.

    Google Scholar 

  39. Yamaguchi KKDL, Pereira LFR, Lamarão CV, Lima ES, Da Veiga-Junior VF. Amazon acai: Chemistry and biological activities: A review. Food Chem. 2015;15(179):137–51.

    Article  Google Scholar 

  40. Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, et al. Açaí (Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Vol. 15, Nutrients. MDPI; 2023.

  41. Oliveira AR, Ribeiro AEC, Oliveira ÉR, Garcia MC, Soares Júnior MS, Caliari M. Structural and physicochemical properties of freeze-dried açaí pulp (Euterpe oleracea mart.). Food Science and Technology (Brazil). 2020;40(2):282–9.

  42. Magalhães TSS de A, Macedo PC de O, Converti A, de Lima ÁAN. The use of euterpe oleracea mart. As a new perspective for disease treatment and prevention. Vol. 10, Biomolecules. MDPI; 2020.

  43. Barbosa PO, Pala D, Silva CT, de Souza MO, do Amaral JF, Vieira RAL, et al. Açai (Euterpe oleracea Mart.) pulp dietary intake improves cellular antioxidant enzymes and biomarkers of serum in healthy women. Nutrition. 2016;32(6):674–80.

    Article  CAS  PubMed  Google Scholar 

  44. Pala D, Barbosa PO, Silva CT, de Souza MO, Freitas FR, Volp ACP, et al. Açai (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: A prospective study in women. Clin Nutr. 2018;37(2):618–23.

    Article  CAS  PubMed  Google Scholar 

  45. de Liz S, Cardoso AL, Copetti CLK, de Fragas Hinnig P, Vieira FGK, da Silva EL, et al. Açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) juices improved HDL-c levels and antioxidant defense of healthy adults in a 4-week randomized cross-over study. Clin Nutr. 2020;39(12):3629–36.

    Article  CAS  PubMed  Google Scholar 

  46. Fernandes MS, Machado AK, Assmann CE, Andrade EN, Azzolin VF, Duarte MMMF, et al. Açaí (Euterpe oleracea Mart.) reduces the inflammatory response triggered in vitro by the antipsychotic drug olanzapine in RAW 264.7 macrophage cells. Acta Sci Pol Technol Aliment [Internet]. 2021 [cited 2023 Aug 25];20(2):149–63. Available from: https://pubmed.ncbi.nlm.nih.gov/33884853/.

  47. Barbosa PO, de Souza MO, Paiva DPD, Silva ME, Lima WG, Bermano G, et al. Açaí (Euterpe oleracea Martius) supplementation in the diet during gestation and lactation attenuates liver steatosis in dams and protects offspring. Eur J Nutr. 2020;59(5):1895–908.

    Article  CAS  PubMed  Google Scholar 

  48. Figueiredo AM, Cardoso AC, Buzati Pereira BL, Candido Silva RA, Goncalves Della Ripa AF, Bachiega Pinelli TF, et al. Açai supplementation (Euterpe oleracea Mart.) attenuates cardiac remodeling after myocardial infarction in rats through different mechanistic pathways. PLoS One. 2022;17(3 March).

  49. Machado AK, Cadoná FC, Assmann CE, Andreazza AC, Duarte MMMF, dos Santos Branco C, et al. Açaí (Euterpe oleracea Mart.) has anti-inflammatory potential through NLRP3-inflammasome modulation. J Funct Foods. 2019;56:364–71.

    Article  CAS  Google Scholar 

  50. Silva AP de S, de Camargo AC, Lazarini JG, Franchin M, Sardi J de CO, Rosalen PL, et al. Phenolic Profile and the Antioxidant, Anti-Inflammatory, and Antimicrobial Properties of Açaí (Euterpe oleracea) Meal: A Prospective Study. Foods 2023, Vol 12, Page 86 [Internet]. 2022 [cited 2023 Nov 8];12(1):86. Available from: https://www.mdpi.com/2304-8158/12/1/86/htm.

  51. Kim H, Simbo SY, Fang C, McAlister L, Roque A, Banerjee N, et al. Açaí (: Euterpe oleracea Mart.) beverage consumption improves biomarkers for inflammation but not glucose- or lipid-metabolism in individuals with metabolic syndrome in a randomized, double-blinded, placebo-controlled clinical trial. Food Funct. 2018;9(6):3097–103.

    Article  CAS  PubMed  Google Scholar 

  52. Ajit D, Simonyi A, Li R, Chen Z, Hannink M, Fritsche KL, et al. Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in di TNC1 astrocytes. Neurochem Int. 2016;1(97):49–56.

    Article  Google Scholar 

  53. Dias MMDS, Martino HSD, Noratto G, Roque-Andrade A, Stringheta PC, Talcott S, et al. Anti-inflammatory activity of polyphenolics from açai (Euterpe oleracea Martius) in intestinal myofibroblasts CCD-18Co cells. Food Funct. 2015;6(10):3249–56.

    Article  CAS  PubMed  Google Scholar 

  54. Carvalho MM de F, Lage NN, de Souza Paulino AH, Pereira RR, de Almeida LT, da Silva TF, et al. Effects of açai on oxidative stress, ER stress, and inflammation-related parameters in mice with high fat diet-fed induced NAFLD. Sci Rep. 2019;9(1).

  55. Vidigal MCTR, Minim VPR, Carvalho NB, Milagres MP, Gonçalves ACA. Effect of a health claim on consumer acceptance of exotic Brazilian fruit juices: Açaí (Euterpe oleracea Mart.), Camu-camu (Myrciaria dubia), Cajá (Spondias lutea L.) and Umbu (Spondias tuberosa Arruda). Food Res Int. 2011;44(7):1988–96.

    Article  Google Scholar 

  56. Akter MS, Oh S, Eun JB, Ahmed M. Nutritional compositions and health promoting phytochemicals of camu-camu (myrciaria dubia) fruit: A review. Food Res Int. 2011;44(7):1728–32.

    Article  CAS  Google Scholar 

  57. Chirinos R, Galarza J, Betalleluz-Pallardel I, Pedreschi R, Campos D. Antioxidant compounds and antioxidant capacity of Peruvian camu camu (Myrciaria dubia (H.B.K.) McVaugh) fruit at different maturity stages. Food Chem. 2010;120(4):1019–24.

    Article  CAS  Google Scholar 

  58. Neves LC, Silva VX da, Pontis JA, Flach A, Roberto SR. Bioactive compounds and antioxidant activity in pre-harvest camu-camu [Myrciaria dubia (H.B.K.) Mc Vaugh] fruits. Sci Hortic [Internet]. 2015 [cited 2023 Apr 26];Complete(186):223–9. Available from: https://www.infona.pl//resource/bwmeta1.element.elsevier-47d9eab6-73a8-3d16-a01c-7c9dcfa780ee.

  59. Gonçalves AEDSS, Lellis-Santos C, Curi R, Lajolo FM, Genovese MI. Frozen pulp extracts of camu-camu (Myrciaria dubia McVaugh) attenuate the hyperlipidemia and lipid peroxidation of Type 1 diabetic rats. Food Res Int [Internet]. 2014 [cited 2023 Apr 28];64:1–8. Available from: https://pubmed.ncbi.nlm.nih.gov/30011628/.

  60. Do NQ, Zheng S, Park B, Nguyen QTN, Choi BR, Fang M, et al. Camu-Camu Fruit Extract Inhibits Oxidative Stress and Inflammatory Responses by Regulating NFAT and Nrf2 Signaling Pathways in High Glucose-Induced Human Keratinocytes. Molecules [Internet]. 2021 [cited 2023 Apr 26];26(11). Available from: https://pubmed.ncbi.nlm.nih.gov/34073317/.

  61. Fidelis M, do Carmo MAV, da Cruz TM, Azevedo L, Myoda T, Miranda Furtado M, et al. Camu-camu seed (Myrciaria dubia) - From side stream to anantioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chem [Internet]. 2020 [cited 2023 Apr 28];310. Available from: https://pubmed.ncbi.nlm.nih.gov/31816536/.

  62. Renteria JCB, Mauricio-Sandoval EA, Espinoza-Espinoza LA, Cornelio-Santiago HP, Moreno-Quispe LA, Portalatino EJV. Antimicrobial potential of camu camu (Myrciaria dubia) against bacteria, yeasts, and parasitic protozoa: a review. Rev Fac Nac Agron Medellin [Internet]. 2022 [cited 2023 Apr 26];75(2). Available from: https://agris.fao.org/agris-search/search.do?recordID=CO2022400779.

  63. Fujita A, Sarkar D, Wu S, Kennelly E, Shetty K, Genovese MI. Evaluation of phenolic-linked bioactives of camu-camu (Myrciaria dubia Mc. Vaugh) for antihyperglycemia, antihypertension, antimicrobial properties and cellular rejuvenation. Food Res Int. 2015;77:194–203.

    Article  CAS  Google Scholar 

  64. Abot A, Brochot A, Pomié N, Wemelle E, Druart C, Régnier M, et al. Camu-Camu Reduces Obesity and Improves Diabetic Profiles of Obese and Diabetic Mice: A Dose-Ranging Study. Metabolites [Internet]. 2022 [cited 2023 Aug 25];12(4). Available from: https://pubmed.ncbi.nlm.nih.gov/35448490/.

  65. Balisteiro DM, Araujo RL de, Giacaglia LR, Genovese MI. Effect of clarified Brazilian native fruit juices on postprandial glycemia in healthy subjects. Food Res Int [Internet]. 2017 [cited 2023 Apr 28];100(Pt 2):196–203. Available from: https://pubmed.ncbi.nlm.nih.gov/28888441/.

  66. Peña Hidalgo M, Orlando F, Campos E, Donayre Ramirez M, Villacrés-Vallejo J, Torres DV. Efecto tóxico y antidiabético de tres plantas amazónicas en ratones balb/c inducidas con estreptozotocina. Ciencia Amazónica (Iquitos) [Internet]. 2021 [cited 2023 Apr 28];9(2):21–32. Available from: https://ojs.ucp.edu.pe/index.php/cienciaamazonica/article/view/338.

  67. Donado-Pestana CM, Moura MHC, de Araujo RL, de Lima SG, de Moraes Barros HR, Genovese MI. Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Curr Opin Food Sci. 2018;1(19):42–9.

    Article  Google Scholar 

  68. Gomes JVP, Rigolon TCB, Souza MS da S, Alvarez-Leite JI, Lucia CM Della, Martino HSD, et al. Antiobesity effects of anthocyanins on mitochondrial biogenesis, inflammation, and oxidative stress: A systematic review. Nutrition [Internet]. 2019 [cited 2023 Apr 28];66:192–202. Available from: https://pubmed.ncbi.nlm.nih.gov/31310961/.

  69. Anhê FF, Nachbar RT, Varin TV, Trottier J, Dudonné S, Le Barz M, et al. Treatment with camu camu ( Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut [Internet]. 2019 [cited 2023 Apr 28];68(3):453–64. Available from: https://pubmed.ncbi.nlm.nih.gov/30064988/.

  70. do Nascimento OV, Boleti AP de A, Schwertz M, Lima ES. Dietary supplementation with camu-camu and continuous exercises in the treatment of obesity. Revista de Nutrição [Internet]. 2018 [cited 2023 Apr 28];31(1):25–33. Available from: http://www.scielo.br/j/rn/a/kzYrzX9QLq4yqhqJ57FShrJ/?lang=en.

  71. Kahn F. The genus Astrocaryum (Arecaceae). Rev Peru Biol [Internet]. 2008 [cited 2023 Aug 25];15:31–48. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1727-99332008000000004&lng=es&nrm=iso&tlng=en.

  72. De Oliveira SF, Neto JPDM, Da Silva KER. Uma revisão sobre a morfoanatomia e as propriedades farmacológicas das espécies Astrocaryum aculeatum Meyer e Astrocaryum vulgare Mart. Scientia Amazonia [Internet]. 2018;7(3):18–28. Available from: http://www.scientia-amazonia.org.

  73. Agostini-Costa T da S. Bioactive compounds and health benefits of some palm species traditionally used in Africa and the Americas – A review. Vol. 224, Journal of Ethnopharmacology. Elsevier Ireland Ltd; 2018. p. 202–29.

  74. Linhares BM, Costa AMDC, Abreu HDF, de Melo ACGR, Ribeiro PRE, Montero IF, et al. Fatty Acids Profile, Physicalchemical Properties and Minerals with Quantify Indicador of Astrocaryum aculeatum Pulp Oil. J Agric Sci. 2017;9(12):352.

    Google Scholar 

  75. Silva MB, Perez VH, Pereira NR, Silveira TC, da Silva NRF, de Andrade CM, et al. Drying kinetic of tucum fruits (Astrocaryum aculeatum Meyer): physicochemical and functional properties characterization. J Food Sci Technol. 2018;55(5):1656–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martins MN das N, Martim SR. Geleia mista de tucumã e cupuaçu enriquecida com exocarpo de banana verde. Revista Saber Científico. 2020;9(1):90–101.

  77. Sagrillo MR, Garcia LFM, De Souza Filho OC, Duarte MMMF, Ribeiro EE, Cadoná FC, et al. Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chem. 2015;15(173):741–8.

    Article  Google Scholar 

  78. De Rosso VV, Mercadante AZ. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J Agric Food Chem. 2007;55(13):5062–72.

    Article  PubMed  Google Scholar 

  79. Macía MJ, Armesilla PJ, Cámara-Leret R, Paniagua-Zambrana N, Villalba S, Balslev H, et al. Palm Uses in Northwestern South America: A Quantitative Review. Vol. 77, Botanical Review. 2011. p. 462–570.

  80. Cabral FL, Bernardes VM, Passos DF, de Oliveira JS, Doleski PH, Silveira KL, et al. Astrocaryum aculeatum fruit improves inflammation and redox balance in phytohemagglutinin-stimulated macrophages. J Ethnopharmacol [Internet]. 2020 [cited 2023 Aug 26];247. Available from: https://pubmed.ncbi.nlm.nih.gov/31589969/.

  81. Dos Santos M de FG, Mamede RVS, Rufino M do SM, De Brito ES, Alves RE. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds. Antioxidants (Basel) [Internet]. 2015 [cited 2023 Oct 11];4(3):591–602. Available from: https://pubmed.ncbi.nlm.nih.gov/26783846/.

  82. Bony E, Boudard F, Dussossoy E, Portet K, Brat P, Giaimis J, et al. Chemical Composition and Anti-inflammatory Properties of the Unsaponifiable Fraction from Awara (Astrocaryum vulgare M.) Pulp Oil in Activated J774 Macrophages and in a Mice Model of Endotoxic Shock. Plant Foods Hum Nutr. 2012;67(4):384–92.

    Article  CAS  PubMed  Google Scholar 

  83. Nascimento K, Copetti PM, Fernandes A, Klein B, Fogaça A, Zepka LQ, et al. Phytochemical analysis and evaluation of the antioxidant and antiproliferative effects of Tucumã oil nanocapsules in breast adenocarcinoma cells (MCF-7). Nat Prod Res [Internet]. 2021 [cited 2023 Oct 11];35(12):2060–5. Available from: https://pubmed.ncbi.nlm.nih.gov/34096432/.

  84. Baldissera MD, Souza CF, Grando TH, Sagrillo MR, da Silva AS, Stefani LM, et al. The use of tucumã oil (Astrocaryum vulgare) in alloxan-induced diabetic mice: effects on behavior, oxidant/antioxidant status, and enzymes involved in brain neurotransmission. Mol Cell Biochem. 2017;436(1–2):159–66.

    Article  CAS  PubMed  Google Scholar 

  85. Baldissera MD, Souza CF, Grando TH, Cossetin LF, Sagrillo MR, Nascimento K, et al. Antihyperglycemic, antioxidant activities of tucumã oil (Astrocaryum vulgare) in alloxan-induced diabetic mice, and identification of fatty acid profile by gas chromatograph: New natural source to treat hyperglycemia. Chem Biol Interact. 2017;25(270):51–8.

    Article  Google Scholar 

  86. Jantsch MH, Bernardes VM, Oliveira JS, Passos DF, Dornelles GL, Manzoni AG, et al. Tucumã (Astrocaryum aculeatum) prevents memory loss and oxidative imbalance in the brain of rats with hyperlipidemia. J Food Biochem. 2021;45(4).

  87. Copetti PM, de Oliveira PSB, Garcia LFM, Vaucher RA, Duarte MMF, Krause LF, et al. Tucumã extracts decreases PML/RARΑ gene expression in NB4/APL cell line. Archives in Biosciences & Health. 2019;1(1):77–98.

    Article  Google Scholar 

  88. Stefanello MÉA, Pascoal ACRF, Salvador MJ. Essential Oils from Neotropical Myrtaceae: Chemical Diversity and Biological Properties. Chem Biodivers. 2011;8:73–94.

    Article  CAS  PubMed  Google Scholar 

  89. Fidelis EM, Savall ASP, de Oliveira Pereira F, Quines CB, Ávila DS, Pinton S. Pitanga (Eugenia uniflora L.) as a source of bioactive compounds for health benefits: A review. Vol. 15, Arabian Journal of Chemistry. Elsevier B.V.; 2022.

  90. Vizzotto M, Cabral L, Santos A. Pitanga (Eugenia uniflora L.). In: Postharvest Biology and Technology of Tropical and Subtropical Fruits. Elsevier Ltd; 2011.

  91. Bagetti M, Facco MP, Piccolo J, Hirsch GE, Rodriguez-Amaya D, Kobori CN, et al. Physicochemical characterization and antioxidant capacity of pitanga fruits (Eugenia uniflora L.). Ciência e Tecnologia de Alimentos. 2011;31(1):147–54.

  92. Porcu OM, Rodriguez-Amaya DB. Variation in the carotenoid composition of the lycopene-rich Brazilian fruit Eugenia uniflora L. Plant Foods Hum Nutr. 2008;63(4):195–9.

    Article  CAS  PubMed  Google Scholar 

  93. Denardin CC, Hirsch GE, Da Rocha RF, Vizzotto M, Henriques AT, Moreira JCF, et al. Antioxidant capacity and bioactive compounds of four Brazilian native fruits. J Food Drug Anal. 2015;23(3):387–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Franzon RC, Carpenedo S, Raseira M do CB, Viñoly MD. Pitanga—Eugenia uniflora L. In: Exotic Fruits Reference Guide. Elsevier; 2018. p. 333–8.

  95. Migues I, Baenas N, Gironés-Vilaplana A, Cesio MV, Heinzen H, Moreno DA. Phenolic Profiling and Antioxidant Capacity of Eugenia uniflora L. (Pitanga) Samples Collected in Different Uruguayan Locations. Foods. 2018;7(5).

  96. Oliveira PS, Chaves VC, Bona NP, Soares MSP, Cardoso JS, Vasconcellos FA, et al. Eugenia uniflora fruit (red type) standardized extract: a potential pharmacological tool to diet-induced metabolic syndrome damage management. Biomed Pharmacother. 2017;92:935–41.

    Article  CAS  PubMed  Google Scholar 

  97. Tambara AL, de Los Santos Moraes L, Dal Forno AH, Boldori JR, Gonçalves Soares AT, de Freitas Rodrigues C, et al. Purple pitanga fruit (Eugenia uniflora L.) protects against oxidative stress and increase the lifespan in Caenorhabditis elegans via the DAF-16/FOXO pathway. Food Chem Toxicol. 2018;120:639–50.

    Article  CAS  PubMed  Google Scholar 

  98. Denardin CC, Martins LAM, Parisi MM, Vieira MQ, Terra SR, Barbé-Tuana FM, et al. Autophagy induced by purple pitanga (Eugenia uniflora L.) extract triggered a cooperative effect on inducing the hepatic stellate cell death. Cell Biol Toxicol. 2017;33(2):197–206.

    Article  PubMed  Google Scholar 

  99. Flores NP, Bona NP, Luduvico KP, Cardoso J de S, Soares MSP, Gamaro GD, et al. Eugenia uniflora fruit extract exerts neuroprotective effect on chronic unpredictable stress-induced behavioral and neurochemical changes. J Food Biochem [Internet]. 2020 [cited 2023 Aug 26];44(10):e13442. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jfbc.13442.

  100. Josino Soares D, Walker J, Pignitter M, Walker JM, Imboeck JM, Ehrnhoefer-Ressler MM, et al. Pitanga (Eugenia uniflora L.) fruit juice and two major constituents thereof exhibit anti-inflammatory properties in human gingival and oral gum epithelial cells. Food Funct [Internet]. 2014 [cited 2023 Oct 11];5(11):2981–8. Available from: https://pubmed.ncbi.nlm.nih.gov/25228206/.

  101. Cardoso J de S, Oliveira PS, Bona NP, Vasconcellos FA, Baldissarelli J, Vizzotto M, et al. Antioxidant, antihyperglycemic, and antidyslipidemic effects of Brazilian-native fruit extracts in an animal model of insulin resistance. Redox Rep [Internet]. 2018 [cited 2023 Aug 26];23(1):41–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748693/.

  102. Denardin CC, Martins LAM, Parisi MM, Vieira MQ, Terra SR, Barbé-Tuana FM, et al. Autophagy induced by purple pitanga (Eugenia uniflora L.) extract triggered a cooperative effect on inducing the hepatic stellate cell death. Cell Biol Toxicol [Internet]. 2017 [cited 2023 Nov 10];33(2):197–206. Available from: https://pubmed.ncbi.nlm.nih.gov/27744523/.

  103. Denardin CC, Parisi MM, Martins LAM, Terra SR, Borojevic R, Vizzotto M, et al. Antiproliferative and cytotoxic effects of purple pitanga (Eugenia uniflora L.) extract on activated hepatic stellate cells. Cell Biochem Funct [Internet]. 2014 [cited 2023 Oct 11];32(1):16–23. Available from: https://pubmed.ncbi.nlm.nih.gov/23475531/.

  104. Soares DJ, Walker J, Pignitter M, Walker JM, Imboeck JM, Ehrnhoefer-Ressler MM, et al. Pitanga (Eugenia uniflora L.) fruit juice and two major constituents thereof exhibit anti-inflammatory properties in human gingival and oral gum epithelial cells. Food Funct. 2014;5(11):2981–8.

    Article  CAS  Google Scholar 

  105. Olas B. The Antioxidant Potential of Graviola and Its Potential Medicinal Application. Nutrients [Internet]. 2023 [cited 2023 Aug 26];15(2):402. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865140/.

  106. Zubaidi SN, Mohd Nani H, Ahmad Kamal MS, Abdul Qayyum T, Maarof S, Afzan A, et al. Annona muricata: Comprehensive Review on the Ethnomedicinal, Phytochemistry, and Pharmacological Aspects Focusing on Antidiabetic Properties. Vol. 13, Life. MDPI; 2023.

  107. Florence NT, Benoit MZ, Jonas K, Alexandra T, Désiré DDP, Pierre K, et al. Antidiabetic and antioxidant effects of Annona muricata (Annonaceae), aqueous extract on streptozotocin-induced diabetic rats. J Ethnopharmacol. 2014;151(2):784–90.

    Article  PubMed  Google Scholar 

  108. Gajalakshmi S, Vijayalakshmi S, Devi RV. Phytochemical and pharmacological properties of Annona muricata: A review. Int J Pharm Pharm Sci. 2012;4(2):3–6.

    Google Scholar 

  109. Sreekeesoon DP, Mahomoodally MF. Ethnopharmacological analysis of medicinal plants and animals used in the treatment and management of pain in Mauritius. J Ethnopharmacol. 2014;18(157):181–200.

    Article  Google Scholar 

  110. Rady I, Bloch MB, Chamcheu RCN, Banang Mbeumi S, Anwar MR, Mohamed H, et al. Anticancer Properties of Graviola (Annona muricata): A Comprehensive Mechanistic Review. Oxid Med Cell Longev. 2018;2018.

  111. Mutakin M, Fauziati R, Fadhilah FN, Zuhrotun A, Amalia R, Hadisaputri YE. Pharmacological Activities of Soursop (Annona muricata Lin.). Molecules 2022, Vol 27, Page 1201 [Internet]. 2022 [cited 2024 May 12];27(4):1201. Available from: https://www.mdpi.com/1420-3049/27/4/1201/htm.

  112. Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, Kadir HA. Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities. Int J Mol Sci [Internet]. 2015 [cited 2023 Aug 26];16(7):15625. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519917/.

  113. Moghadamtousi SZ, Karimian H, Rouhollahi E, Paydar M, Fadaeinasab M, Abdul KH. Annona muricata leaves induce G1 cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells. J Ethnopharmacol. 2014;28(156):277–89.

    Article  Google Scholar 

  114. Moghadamtousi SZ, Rouhollahi E, Karimian H, Fadaeinasab M, Firoozinia M, Abdulla MA, et al. The Chemopotential Effect of Annona muricata Leaves against Azoxymethane-Induced Colonic Aberrant Crypt Foci in Rats and the Apoptotic Effect of Acetogenin Annomuricin E in HT-29 Cells: A Bioassay-Guided Approach. PLoS One [Internet]. 2015 [cited 2023 Aug 26];10(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393181/.

  115. Son YR, Choi EH, Kim GT, Park TS, Shim SM. Bioefficacy of Graviola leaf extracts in scavenging free radicals and upregulating antioxidant genes. Food Funct [Internet]. 2016 [cited 2023 Aug 27];7(2):861–71. Available from: https://pubs.rsc.org/en/content/articlehtml/2016/fo/c5fo01258a.

  116. Mutakin M, Fauziati R, Fadhilah FN, Zuhrotun A, Amalia R, Hadisaputri YE. Pharmacological Activities of Soursop (Annona muricata Lin.). Molecules [Internet]. 2022 [cited 2023 Aug 26];27(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878098/.

  117. Prasad SK, Pradeep S, Shimavallu C, Kollur SP, Syed A, Marraiki N, et al. Evaluation of Annona muricata Acetogenins as Potential Anti-SARS-CoV-2 Agents Through Computational Approaches. Front Chem [Internet]. 2021 [cited 2023 Aug 26];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958878/.

  118. Yajid AI, Ab Rahman HS, Wong MPK, Wan Zain WZ. Potential Benefits of Annona muricata in Combating Cancer: A Review. Malays J Med Sci [Internet]. 2018 Jan 1 [cited 2023 Aug 27];25(1):5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862046/.

  119. Yuan SSF, Chang HL, Chen HW, Kuo FC, Liaw CC, Su JH, et al. Selective cytotoxicity of squamocin on T24 bladder cancer cells at the S-phase via a Bax-, Bad-, and caspase-3-related pathways. Life Sci. 2006;78(8):869–74.

    Article  CAS  PubMed  Google Scholar 

  120. Saraiva AL, Justino AB, Franco RR, Silva HCG, Arruda FDS, Klein SG, et al. Polyphenols-Rich Fraction from Annona muricata Linn. Leaves Attenuates Oxidative and Inflammatory Responses in Neutrophils, Macrophages, and Experimental Lung Injury. Pharmaceutics [Internet]. 2022 [cited 2023 Nov 10];14(6). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228609/.

  121. Han JM, Song HY, Kim K Il, Park WY, Park SH, Byun EB, et al. Polysaccharides from Annona muricata leaves protect against cisplatin-induced cytotoxicity in macrophages by alleviating mitochondrial dysfunction. Mol Med Rep [Internet]. 2023 [cited 2023 Nov 10];27(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743389/.

  122. Salsabila IA, Nugraheni N, Ahlina FN, Haryanti S, Meiyanto E. Synergistic Cotreatment Potential of Soursop ( Annona muricata L.) Leaves Extract with Doxorubicin on 4T1 Cells with Antisenescence and Anti-reactive-oxygen-species Properties. Iran J Pharm Res [Internet]. 2021 [cited 2023 Oct 11];20(2):57–67. Available from: https://pubmed.ncbi.nlm.nih.gov/34567146/.

  123. Naik AV, Dessai SN, Sellappan K. Antitumour activity of Annona muricata L. leaf methanol extracts against Ehrlich Ascites Carcinoma and Dalton’s Lymphoma Ascites mediated tumours in Swiss albino mice. Libyan J Med [Internet]. 2021 [cited 2023 Nov 10];16(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33380281/.

  124. Rojas-Armas JP, Arroyo-Acevedo JL, Palomino-Pacheco M, Ortiz-Sánchez JM, Calva J, Justil-Guerrero HJ, et al. Phytochemical Constituents and Ameliorative Effect of the Essential Oil from Annona muricata L. Leaves in a Murine Model of Breast Cancer. Molecules [Internet]. 2022 [cited 2023 Nov 10];27(6):1818. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949400/.

  125. Alsenosy AWA, El-Far AH, Sadek KM, Ibrahim SA, Atta MS, Sayed-Ahmed A, et al. Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats. PLoS One [Internet]. 2019 [cited 2023 Nov 10];14(9). Available from: https://pubmed.ncbi.nlm.nih.gov/31509596/.

  126. Son Y, Lee H, Son SY, Lee CH, Kim SY, Lim Y. Ameliorative Effect of Annona muricata (Graviola) Extract on Hyperglycemia Induced Hepatic Damage in Type 2 Diabetic Mice. Antioxidants [Internet]. 2021 [cited 2023 Nov 10];10(10). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532999/.

  127. Ojo OA, Grant S, Amanze JC, Oni AI, Ojo AB, Elebiyo TC, et al. Annona muricata L. peel extract inhibits carbohydrate metabolizing enzymes and reduces pancreatic β-cells, inflammation, and apoptosis via upregulation of PI3K/AKT genes. PLoS One [Internet]. 2022 [cited 2023 Nov 10];17(10). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612462/.

  128. Oridupa OA, Oyagbemi AA, Adejumobi O, Falade FB, Obisesan AD, Abegunde BA, et al. Compensatory depression of arterial pressure and reversal of ECG abnormalities by Annona muricata and Curcuma longa in hypertensive Wistar rats. J Complement Integr Med [Internet]. 2021 [cited 2023 Nov 10];19(2):369–76. Available from: https://pubmed.ncbi.nlm.nih.gov/34018384/.

  129. Abdul Wahab SM, Husain K, Jantan I, Arshad L, Haque MdA, Mohd Fauzi N, et al. Immunosuppressive Effects of Annona muricata L. Leaf Extract on Cellular and Humoral Immune Responses in Male Wistar Rats. Curr Pharm Biotechnol [Internet]. 2023 [cited 2023 Nov 10];24(11):1465–77. Available from: https://pubmed.ncbi.nlm.nih.gov/36545731/.

  130. Helal MG, Abd Elhameed AG. Graviola mitigates acetic acid-induced ulcerative colitis in rats: insight on apoptosis and Wnt/Hh signaling crosstalk. Environ Sci Pollut Res Int [Internet]. 2021 [cited 2023 Nov 10];28(23):29615–28. Available from: https://pubmed.ncbi.nlm.nih.gov/33559079/.

  131. Shukry M, El-Shehawi AM, El-Kholy WM, Elsisy RA, Hamoda HS, Tohamy HG, et al. Ameliorative Effect of Graviola ( Annona muricata) on Mono Sodium Glutamate-Induced Hepatic Injury in Rats: Antioxidant, Apoptotic, Anti-inflammatory, Lipogenesis Markers, and Histopathological Studies. Animals (Basel) [Internet]. 2020 [cited 2023 Nov 10];10(11):1–19. Available from: https://pubmed.ncbi.nlm.nih.gov/33143024/.

  132. Jean-Marie E, Jiang W, Bereau D, Robinson JC. Theobroma cacao and Theobroma grandiflorum: Botany, Composition and Pharmacological Activities of Pods and Seeds. Vol. 11, Foods. MDPI; 2022.

  133. de Oliveira M do SP, Mattietto R de A, Domingues AFN, Carvalho AV, de Oliveira NP, Neto JT de F. Capítulo 5 - Alimentícias. In: Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: Região Norte. 2022. p. 133–1382.

  134. Pugliese AG, Tomas-Barberan FA, Truchado P, Genovese MI. Flavonoids, proanthocyanidins, vitamin C, and antioxidant activity of theobroma grandiflorum (Cupuassu) pulp and seeds. J Agric Food Chem. 2013;61(11):2720–8.

    Article  CAS  PubMed  Google Scholar 

  135. Souza JML, Rocha JM, Cartaxo CBC, Vasconcelos MAM, Álvares VS, Nascimento MM, et al. Monitoring and optimization of cupuaçu seed fermentation, drying and storage processes. Microorganisms. 2020;8(9):1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dantas AM, Mafaldo IM, de Lima Oliveira PM, dos Santos Lima M, Magnani M, Borges GSC. Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. Food Chem. 2019;274:202–14.

    Article  CAS  PubMed  Google Scholar 

  137. Carmona-Hernandez JC, González-Correa CH, Le M, Idárraga-Mejía AM. Flavonoid/polyphenol ratio in mauritia flexuosa and theobroma grandiflorum as an indicator of effective antioxidant action. Molecules. 2021;26(21).

  138. Punaro GR, Lima DY, Rodrigues AM, Pugliero S, Mouro MG, Rogero MM, et al. Cupuaçu extract reduces nitrosative stress and modulates inflammatory mediators in the kidneys of experimental diabetes. Clin Nutr. 2019;38(1):364–71.

    Article  CAS  PubMed  Google Scholar 

  139. Curimbaba TFS, Almeida-Junior LD, Chagas AS, Quaglio AEV, Herculano AM, Di Stasi LC. Prebiotic, antioxidant and anti-inflammatory properties of edible Amazon fruits. Food Biosci. 2020;1(36): 100599.

    Article  Google Scholar 

  140. Zagmignan A, Mendes YC, Mesquita GP, Santos GDC dos, Silva L dos S, de Souza Sales AC, et al. Short-Term Intake of Theobroma grandiflorum Juice Fermented with Lacticaseibacillus rhamnosus ATCC 9595 Amended the Outcome of Endotoxemia Induced by Lipopolysaccharide. Nutrients. 2023;15(4).

  141. Neri-Numa IA, Soriano Sancho RA, Pereira APA, Pastore GM. Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Res Int [Internet]. 2017 [cited 2023 May 4];103:345–60. Available from: https://europepmc.org/article/med/29389624.

  142. Clement CR, de Cristo-Araújo M, Coppens d’Eeckenbrugge G, dos Reis VM, Lehnebach R, Picanço-Rodrigues D. Origin and dispersal of domesticated peach palm. Front Ecol Evol. 2017;5(NOV):148.

  143. Cantu-Jungles TM, Cipriani TR, Iacomini M, Hamaker BR, Cordeiro LMC. A pectic polysaccharide from peach palm fruits (Bactris gasipaes) and its fermentation profile by the human gut microbiota in vitro. Bioactive Carbohydrates and Dietary Fibre [Internet]. 2017 [cited 2023 May 4];C(9):1–6. Available from: https://www.infona.pl//resource/bwmeta1.element.elsevier-09e8c93c-a5d8-3635-84cb-8c3e60aed2c3.

  144. Matos KAN, Lima DP, Barbosa APP, Mercadante AZ, Chisté RC. Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chem. 2019;30(272):216–21.

    Article  Google Scholar 

  145. Bolanho BC, Danesi EDG, Beléia AP. Peach palm (bactris gasipaes kunth) characterization and the potential of by-products flour processing. Food Sci Technol Res. 2013;19(6):1061–9.

    Article  CAS  Google Scholar 

  146. Madrigal Redondo GL, Vargas Zúñiga R, Carazo Berrocal G, Ramírez Arguedas N, Baltodano Viales E, Blanco Barrantes J, et al. Phytochemical characterization of extracts of the mesocarp of Bactris gasipaes and evaluation of its antioxidant power for pharmaceutical dermal formulations. Int J Herb Med. 2019;7(4):56–67.

    Google Scholar 

  147. Espinosa-Pardo FA, Martinez J, Martinez-Correa HA. Extraction of bioactive compounds from peach palm pulp (Bactris gasipaes) using supercritical CO2. J Supercrit Fluids. 2014;1(93):2–6.

    Article  Google Scholar 

  148. J Zhang X Wang V Vikash Q Ye D Wu Y Liu ROS Review Article ROS-Mediated Cellular Signaling. Oxid Med Cell Longev [Internet]. et al 2016 cited 2023 May 11 Available from: https://doi.org/10.1155/2016/4350965.

  149. Kawata A, Murakami Y, Suzuki S, Fujisawa S. Anti-inflammatory Activity of β-Carotene, Lycopene and Tri- n-butylborane, a Scavenger of Reactive Oxygen Species. In Vivo [Internet]. 2018 [cited 2023 May 11];32(2):255–64. Available from: https://pubmed.ncbi.nlm.nih.gov/29475907/.

  150. Melhorança Filho AL, Pereira MRR. Atividade antimicrobiana de óleos extraídos de açaí e de pupunha sobre o desenvolvimento de Pseudomonas aeruginosa e Staphylococcus aureus. Bioscience Journal [online] [Internet]. 2012 [cited 2023 May 11];598–603. Available from: http://www.seer.ufu.br/index.php/biosciencejournal/article/view/13663.

  151. Carvalho RP, Lemos JRG, Sales RS de A, Martins MG, Nascimento CH, Bayona M, et al. THE CONSUMPTION OF RED PUPUNHA (BACTRIS GASIPAES KUNTH) INCREASES HDL CHOLESTEROL AND REDUCES WEIGHT GAIN OF LACTATING AND POST-LACTATING WISTAR RATS. J Aging Res Clin Pract [Internet]. 2013 [cited 2023 May 11];2(3):257. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287373/.

  152. Smith N, Atroch AL. Guaraná’s Journey from Regional Tonic to Aphrodisiac and Global Energy Drink. Evid Based Complement Alternat Med [Internet]. 2010 [cited 2023 May 19];7(3):279. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887323/.

  153. Leite RP, Wada RS, Monteiro JC, Predes FS, Dolder H. Protective effect of Guaraná (Paullinia cupana var. sorbilis) pre-treatment on cadmium-induced damages in adult Wistar testis. Biol Trace Elem Res [Internet]. 2011 [cited 2023 May 19];141(1–3):262–74. Available from: https://pubmed.ncbi.nlm.nih.gov/20495888/.

  154. Machado KN, Freitas AA de, Cunha LH, Faraco AAG, Pádua RM de, Braga FC, et al. A rapid simultaneous determination of methylxanthines and proanthocyanidins in Brazilian guaraná (Paullinia cupana Kunth.). Food Chem [Internet]. 2018;239:180–8. Available from: https://doi.org/10.1016/j.foodchem.2017.06.089.

  155. da Silva GS, Canuto KM, Ribeiro PRV, de Brito ES, Nascimento MM, Zocolo GJ, et al. Chemical profiling of guarana seeds (Paullinia cupana) from different geographical origins using UPLC-QTOF-MS combined with chemometrics. Food Res Int [Internet]. 2017 [cited 2023 May 19];102:700–9. Available from: https://pubmed.ncbi.nlm.nih.gov/29196003/.

  156. Yonekura L, Martins CA, Sampaio GR, Monteiro MP, César LAMH, Mioto BM, et al. Bioavailability of catechins from guaraná (Paullinia cupana) and its effect on antioxidant enzymes and other oxidative stress markers in healthy human subjects. Food Funct [Internet]. 2016 [cited 2023 May 20];7(7):2970–8. Available from: https://pubs.rsc.org/en/content/articlehtml/2016/fo/c6fo00513f.

  157. Beatriz Dorr Cacineiro. Efeitos da Paullinia cupana e de seus principais compostos ativos na modulação da resposta imune [Dissertação (Mestrado)]. [São Paulo]: Universidade de São Paulo; 2012.

  158. Torres EAFS, Pinaffi-Langley ACC, de Souza Figueira M, Cordeiro KS, Negrão LD, Soares MJ, et al. Effects of the consumption of guarana on human health: A narrative review. Compr Rev Food Sci Food Saf. 2022;21(1):272–95.

    Article  PubMed  Google Scholar 

  159. Hack B, Penna EM, Talik T, Chandrashekhar R, Millard-Stafford M. Effect of Guarana (Paullinia cupana) on Cognitive Performance: A Systematic Review and Meta-Analysis. Nutrients [Internet]. 2023 [cited 2023 May 19];15(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865053/.

  160. Aldhahrani A. Protective effects of guarana ( Paullinia cupana) against methotrexate-induced intestinal damage in mice. Food Sci Nutr [Internet]. 2021 [cited 2023 May 19];9(7):3397–404. Available from: https://pubmed.ncbi.nlm.nih.gov/34262701/.

  161. Abboud R de S, Ribeiro IC de A, da Silva VAP, Corrêa LBNS, Boaventura GT, Chagas MA. Guarana (Paullinia cupana) consumption improves hepatic and renal parameters in alloxan-induced diabetic rats. Nutr Hosp [Internet]. 2020 [cited 2023 May 19];37(2):343–8. Available from: https://pubmed.ncbi.nlm.nih.gov/31746621/.

  162. Bortolin RC, Vargas AR, de Miranda Ramos V, Gasparotto J, Chaves PR, Schnorr CE, et al. Guarana supplementation attenuated obesity, insulin resistance, and adipokines dysregulation induced by a standardized human Western diet via brown adipose tissue activation. Phytotherapy Research [Internet]. 2019 [cited 2023 May 20];33(5):1394–403. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6330.

  163. Ruchel JB, Bernardes VM, Braun JBS, Manzoni AG, Passos DF, Castilhos LG, et al. Lipotoxicity-associated inflammation is prevented by guarana (Paullinia cupana) in a model of hyperlipidemia. Drug Chem Toxicol [Internet]. 2021 [cited 2023 May 20];44(5):524–32. Available from: https://www.tandfonline.com/doi/abs/10.1080/01480545.2019.1624767.

  164. Cadoná FC, Rosa JL, Schneider T, Cubillos-Rojas M, Sánchez-Tena S, Azzolin VF, et al. Guaraná, a Highly Caffeinated Food, Presents in vitro Antitumor Activity in Colorectal and Breast Cancer Cell Lines by Inhibiting AKT/mTOR/S6K and MAPKs Pathways. Nutr Cancer [Internet]. 2017 [cited 2023 May 20];69(5):800–10. Available from: https://www.tandfonline.com/doi/abs/10.1080/01635581.2017.1324994.

  165. Portella RDL, Barcelos RP, Da Rosa EJF, Ribeiro EE, Da Cruz IBM, Suleiman L, et al. Guaraná (Paullinia cupana Kunth) effects on LDL oxidation in elderly people: An in vitro and in vivo study. Lipids Health Dis. 2013;12(1):1–9.

    Article  Google Scholar 

  166. Peixoto H, Roxo M, Röhrig T, Richling E, Wang X, Wink M. Anti-Aging and Antioxidant Potential of Paullinia cupana var. sorbilis: Findings in Caenorhabditis elegans Indicate a New Utilization for Roasted Seeds of Guarana. Medicines. 2017;4(4):61.

  167. Machado KN, Paula Barbosa A de, de Freitas AA, Alvarenga LF, Pádua RM de, Gomes Faraco AA, et al. TNF-α inhibition, antioxidant effects and chemical analysis of extracts and fraction from Brazilian guaraná seed powder. Food Chem. 2021;355.

  168. Boasquívis PF, Silva GMM, Paiva FA, Cavalcanti RM, Nunez CV, De Paula Oliveira R. Guarana (Paullinia cupana) Extract Protects Caenorhabditis elegans Models for Alzheimer Disease and Huntington Disease through Activation of Antioxidant and Protein Degradation Pathways. Oxid Med Cell Longev. 2018;2018.

  169. Maldaner DR, Pellenz NL, Barbisan F, Azzolin VF, Mastella MH, Teixeira CF, et al. Interaction between low-level laser therapy and Guarana (Paullinia cupana) extract induces antioxidant, anti-inflammatory, and anti-apoptotic effects and promotes proliferation in dermal fibroblasts. J Cosmet Dermatol [Internet]. 2020 [cited 2023 May 20];19(3):629–37. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jocd.13055.

  170. Kalidindi N, Thimmaiah NV, Jagadeesh NV, Nandeep R, Swetha S, Kalidindi B. Antifungal and antioxidant activities of organic and aqueous extracts of Annona squamosa Linn. leaves. J Food Drug Anal [Internet]. 2015 [cited 2023 May 15];23(4):795–802. Available from: https://pubmed.ncbi.nlm.nih.gov/28911497/.

  171. Anaya-Esparza LM, García-Magaña M de L, Abraham Domínguez-Ávila J, Yahia EM, Salazar-López NJ, González-Aguilar GA, et al. Annonas: Underutilized species as a potential source of bioactive compounds. Food Res Int [Internet]. 2020 [cited 2023 May 15];138(Pt A). Available from: https://pubmed.ncbi.nlm.nih.gov/33292953/.

  172. Al-Nemari R, Al-Senaidy A, Semlali A, Ismael M, Badjah-Hadj-Ahmed AY, Ben Bacha A. GC-MS profiling and assessment of antioxidant, antibacterial, and anticancer properties of extracts of Annona squamosa L. leaves. BMC Complement Med Ther [Internet]. 2020 [cited 2023 May 15];20(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33023568/.

  173. Meira CS, Guimarães ET, MacEdo TS, da Silva TB, Menezes LRA, Costa EV, et al. Chemical composition of essential oils from Annona vepretorum Mart. and Annona squamosa L. (Annonaceae) leaves and their antimalarial and trypanocidal activities. J Essent Oil Res. 2015;27(2):160–8.

    Article  CAS  Google Scholar 

  174. Mannino G, Gentile C, Porcu A, Agliassa C, Caradonna F, Bertea CM. Chemical Profile and Biological Activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona atemoya) Leaves. Molecules [Internet]. 2020 [cited 2023 May 15];25(11). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321297/.

  175. Shukry W, Galilah D, Elrazek A, Shapana H. Mineral Composition, Nutritional Properties, Vitamins, and Bioactive Compounds in Annona squamosa L. Grown at Different Sites of Egypt. Series of Botany and Environmental Science [Internet]. 2019 [cited 2023 May 15];1(1). Available from: https://www.researchgate.net/publication/357538573_Mineral_Composition_Nutritional_Properties_Vitamins_and_Bioactive_Compounds_in_Annona_squamosa_L_Grown_at_Different_Sites_of_Egypt.

  176. Abdualrahman MAY, Ma H, Zhou C, Ahmed Yagoub AEG, Ali AO, Tahir HE, et al. Postharvest physicochemical properties of the pulp and seed oil from Annona squamosa L. (Gishta) fruit grown in Darfur region, Sudan. Arab J Chem. 2019;12(8):4514–21.

    Article  Google Scholar 

  177. Ren Y yuan, Zhu ZY, Sun H qing, Chen LJ. Structural characterization and inhibition on α-glucosidase activity of acidic polysaccharide from Annona squamosa. Carbohydr Polym [Internet]. 2017 [cited 2023 May 15];174:1–12. Available from: https://pubmed.ncbi.nlm.nih.gov/28821021/.

  178. Seyfried TN, Huysentruyt LC. On the Origin of Cancer Metastasis. Crit Rev Oncog. 2013;18(1–2):43–73.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Fadholly A, Proboningrat A, Dewi Iskandar R, Rantam F, Sudjarwo S. In vitro anticancer activity Annona squamosa extract nanoparticle on WiDr cells. J Adv Pharm Technol Res [Internet]. 2019 [cited 2023 May 16];10(4):149. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844006/.

  180. Panda S, Kar A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors [Internet]. 2007 [cited 2023 May 16];31(3–4):201–10. Available from: https://pubmed.ncbi.nlm.nih.gov/18997283/

  181. Davis JA, Sharma S, Mittra S, Sujatha S, Kanaujia A, Shukla G, et al. Antihyperglycemic effect of Annona squamosa hexane extract in type 2 diabetes animal model: PTP1B inhibition, a possible mechanism of action? Indian J Pharmacol [Internet]. 2012 [cited 2023 May 16];44(3):326. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371453/.

  182. Gu SS, Sun HQ, Zhang XL, Huang FN, Pan LC, Zhu ZY. Structural characterization and inhibitions on α-glucosidase and α-amylase of alkali-extracted water-soluble polysaccharide from Annona squamosa residue. Int J Biol Macromol [Internet]. 2021 [cited 2023 Oct 11];166:730–40. Available from: https://pubmed.ncbi.nlm.nih.gov/33130264/.

  183. Chandra H, Bishnoi P, Yadav A, Patni B, Mishra AP, Nautiyal AR. Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials—A Review. Plants [Internet]. 2017 [cited 2023 May 16];6(2):457–62. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489788/.

  184. K NS, R S, Kumar NS. Phytochemical analysis and antimicrobial activities of Annona squamosa (L) leaf extracts. J Pharmacogn Phytochem [Internet]. 2016 [cited 2023 May 16];5(4):128–31. Available from: https://www.phytojournal.com/archives/2016.v5.i4.906/phytochemical-analysis-and-antimicrobial-activities-of-annona-squamosa-l-leaf-extracts.

  185. Leite DOD, Camilo CJ, Nonato C de FA, de Carvalho NKG, Salazar GJT, de Morais SM, et al. Chemical Profile and Evaluation of the Antioxidant and Anti-Acetylcholinesterase Activities of Annona squamosa L. (Annonaceae) Extracts. Foods [Internet]. 2021 [cited 2023 Oct 11];10(10). Available from: https://pubmed.ncbi.nlm.nih.gov/34681391/.

  186. Lindoso JVDS, Alencar SR, Dos Santos AA, Mello Neto RS, Mendes AV da S, Furtado MM, et al. Effects of “Bacuri” Seed Butter ( Platonia insignis Mart.), a Brazilian Amazon Fruit, on Oxidative Stress and Diabetes Mellitus-Related Parameters in STZ-Diabetic Rats. Biology (Basel) [Internet]. 2022 [cited 2023 Aug 23];11(4). Available from: https://pubmed.ncbi.nlm.nih.gov/35453760/.

  187. Coêlho E de S, Lopes GLN, Pinheiro IM, Holanda JNP de, Alves MM de M, Carvalho Nogueira N, et al. Emulgel based on amphotericin B and bacuri butter (Platonia insignis Mart.) for the treatment of cutaneous leishmaniasis: characterization and in vitro assays. Drug Dev Ind Pharm [Internet]. 2018 [cited 2023 Oct 11];44(10):1713–23. Available from: https://pubmed.ncbi.nlm.nih.gov/29961344/.

  188. Da Costa JS, De Almeida AAC, Tomé A da R, Citó AM das GL, Saffi J, De Freitas RM. Evaluation of possible antioxidant and anticonvulsant effects of the ethyl acetate fraction from Platonia insignis Mart. (Bacuri) on epilepsy models. Epilepsy and Behavior [Internet]. 2011 [cited 2023 Aug 28];22(4):678–84. Available from: http://www.epilepsybehavior.com/article/S1525505011005543/fulltext.

  189. de Freitas FA, Araújo RC, Soares ER, Nunomura RCS, da Silva FMA, da Silva SRS, et al. Biological evaluation and quantitative analysis of antioxidant compounds in pulps of the Amazonian fruits bacuri (Platonia insignis Mart.), ingá (Inga edulis Mart.), and uchi (Sacoglottis uchi Huber) by UHPLC-ESI-MS/MS. J Food Biochem [Internet]. 2018 [cited 2023 Oct 11];42(1):e12455. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jfbc.12455.

  190. Yamaguchi KKL, Dias DS, Lamarão CV, Castelo KFA, Lima MS, Antonio AS, et al. Amazonian Bacuri ( Platonia insignis Mart.) Fruit Waste Valorisation Using Response Surface Methodology. Biomolecules [Internet]. 2021 [cited 2023 Aug 23];11(12). Available from: https://pubmed.ncbi.nlm.nih.gov/34944411/.

  191. Lima NM, Preet G, Marqui SR, Falcoski T de ORS, Navegante G, Soares CP, et al. Metabolic Profiling of Inga Species with Antitumor Activity. Molecules [Internet]. 2022 [cited 2023 Aug 23];27(15). Available from: https://pubmed.ncbi.nlm.nih.gov/35897874/.

  192. Silva AF da, Farias JR, Franco DCG, Galiza AA, Motta EP, Oliveira A da S, et al. Anti- Candida albicans Activity of Ononin and Other Secondary Metabolites from Platonia Insignis MART. Metabolites [Internet]. 2022 [cited 2023 Oct 11];12(11). Available from: https://pubmed.ncbi.nlm.nih.gov/36355097/.

  193. Morais RA, Teixeira GL, Ferreira SRS, Cifuentes A, Block JM. Nutritional Composition and Bioactive Compounds of Native Brazilian Fruits of the Arecaceae Family and Its Potential Applications for Health Promotion. Nutrients [Internet]. 2022 [cited 2023 Aug 23];14(19). Available from: https://pubmed.ncbi.nlm.nih.gov/36235663/.

  194. Leba LJ, Brunschwig C, Saout M, Martial K, Bereau D, Robinson JC. Oenocarpus bacaba and Oenocarpus bataua Leaflets and Roots: A New Source of Antioxidant Compounds. Int J Mol Sci [Internet]. 2016 [cited 2023 Aug 23];17(7). Available from: https://pubmed.ncbi.nlm.nih.gov/27355943/.

  195. Do Nascimento RA, Andrade EL, Santana EB, Da Paixão Ribeiro NF, Costa CML, De Faria LJG. Bacaba powder produced in spouted bed: An alternative source of bioactive compounds and energy food product. Braz J Food Technol. 2019;22:e2018229.

    Article  CAS  Google Scholar 

  196. Pinto RHH, Sena C, Santos O V, Da Costa WA, Rodrigues AMC, Carvalho Junior RN. Extraction of bacaba (Oenocarpus bacaba) oil with supercritical CO2: Global yield isotherms, fatty acid composition, functional quality, oxidative stability. Grasas Y Aceites [Internet]. 2018 [cited 2023 Aug 23];69(2):e246. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1713.

  197. Finco FDBA, Kloss L, Graeve L. Bacaba (Oenocarpus bacaba) phenolic extract induces apoptosis in the MCF-7 breast cancer cell line via the mitochondria-dependent pathway. NFS Journal. 2016;1(5):5–15.

    Article  Google Scholar 

  198. Botelho A de S, Pinheiro WB de S, Neto JRP, Pamplona S das GSR, dos Santos KIP, Silva MN da, et al. First report of phenolic compounds isolated from Inga stipularis DC. (fabaceae) leaves. Nat Prod Res [Internet]. 2023 [cited 2023 Aug 23];37(14):2442–5. Available from: https://pubmed.ncbi.nlm.nih.gov/35200080/.

  199. Sanzovo TOR, Lima NM, Marqui SR, Andrade TJAS, Navegante G, Serafim RB, et al. Chemoprevention assessment, genotoxicity and cytotoxicity of flavonoids from Inga laurina leaves (FABACEAE). Nat Prod Res [Internet]. 2021 [cited 2023 Aug 23];35(18):3089–94. Available from: https://pubmed.ncbi.nlm.nih.gov/31698946/.

  200. Falcoski TOR, Lima NM, Navegante G, Serafim RB, Sorbo JM, Valente V, et al. Genotoxicity, cytotoxicity and chemical profile from Inga laurina ( Fabaceae). Nat Prod Res [Internet]. 2021 [cited 2023 Aug 23];35(4):676–80. Available from: https://pubmed.ncbi.nlm.nih.gov/30931614/.

  201. Simões RR, Kraus SI, Coelho IS, Dal-Secco D, Siebert DA, Micke GA, et al. Eugenia brasiliensis leaves extract attenuates visceral and somatic inflammatory pain in mice. J Ethnopharmacol. 2018;10(217):178–86.

    Article  Google Scholar 

  202. Llerena W, Samaniego I, Angós I, Brito B, Ortiz B, Carrillo W. Biocompounds Content Prediction in Ecuadorian Fruits Using a Mathematical Model. Foods [Internet]. 2019 [cited 2023 Aug 28];8(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723023/.

  203. de Araújo FF, Neri-Numa IA, de Paulo FD, da Cunha GRMC, Pastore GM. Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Res Int. 2019;1(121):57–72.

    Article  Google Scholar 

  204. Baldini TF, Neri-Numa IA, Do Sacramento CK, Schmiele M, Bolini HMA, Pastore GM, et al. Elaboration and Characterization of Apple Nectars Supplemented with Araçá-boi (Eugenia stipitata Mac Vaugh—Myrtaceae). Beverages 2017, Vol 3, Page 59 [Internet]. 2017 [cited 2023 Aug 28];3(4):59. Available from: https://www.mdpi.com/2306-5710/3/4/59/htm.

  205. de Araújo FF, de Paulo FD, Neri-Numa IA, Dias-Audibert FL, Delafiori J, de Souza FG, et al. Chemical characterization of Eugenia stipitata: A native fruit from the Amazon rich in nutrients and source of bioactive compounds. Food Res Int. 2021;1(139):109904.

    Article  Google Scholar 

  206. Garzón GA, Narváez-Cuenca CE, Kopec RE, Barry AM, Riedl KM, Schwartz SJ. Determination of carotenoids, total phenolic content, and antioxidant activity of Arazá (Eugenia stipitata McVaugh), an amazonian fruit. J Agric Food Chem [Internet]. 2012 [cited 2023 Aug 28];60(18):4709–17. Available from: https://pubs.acs.org/doi/abs/10.1021/jf205347f.

  207. Neri-Numa IA, Carvalho-Silva LB, Morales JP, Malta LG, Muramoto MT, Ferreira JEM, et al. Evaluation of the antioxidant, antiproliferative and antimutagenic potential of araçá-boi fruit (Eugenia stipitata Mc Vaugh — Myrtaceae) of the Brazilian Amazon Forest. Food Res Int. 2013;50(1):70–6.

    Article  CAS  Google Scholar 

  208. dos Santos CRB, Sampaio MGV, Vandesmet LCS, dos Santos BS, de Menezes SA, Portela BYM, et al. Chemical composition and biological activities of the essential oil from Eugenia stipitata McVaugh leaves. Nat Prod Res [Internet]. 2022 [cited 2023 Oct 11]; Available from: https://pubmed.ncbi.nlm.nih.gov/36469681/.

  209. Freire JAP, Barros KBNT, Lima LKF, Martins JM, Araújo Y de C, da Silva Oliveira GL, et al. Phytochemistry Profile, Nutritional Properties and Pharmacological Activities of Mauritia flexuosa. J Food Sci [Internet]. 2016 [cited 2023 Aug 26];81(11):R2611–22. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/1750-3841.13529.

  210. Manhães LRT, Sabaa-Srur AUO. Composição centesimal e de compostos bioativos em frutos de buriti coletados no pará. Ciencia e Tecnologia de Alimentos. 2011;31(4):856–63.

    Article  Google Scholar 

  211. Barboza NL, Cruz JM dos A, Corrêa RF, Lamarão CV, Lima AR, Inada NM, et al. Buriti (Mauritia flexuosa L. f.): An Amazonian fruit with potential health benefits. Food Res Int. 2022;159:111654.

  212. Cordeiro LMC, De Almeida CP, Iacomini M. Unusual linear polysaccharides: (1→5)-α-l-Arabinan, (1→3)-(1→4)-α-d-glucan and (1→4)-β-d-xylan from pulp of buriti (Mauritia flexuosa), an edible palm fruit from the Amazon region. Food Chem. 2015;15(173):141–6.

    Article  Google Scholar 

  213. Darnet SH, da Silva LHM, Rodrigues AM da C, Lins RT. Nutritional composition, fatty acid and tocopherol contents of buriti (Mauritia flexuosa) and patawa (Oenocarpus bataua) fruit pulp from the amazon region. Food Science and Technology [Internet]. 2011 [cited 2023 Aug 26];31(2):488–91. Available from: https://www.scielo.br/j/cta/a/fxrrdyVJpZHxq67t9RVsB7P/.

  214. Aquino JDS, Pessoa DCNDP, Araújo K de LG V, Epaminondas PS, Schuler ARP, De Souza AG, et al. Refining of Buriti Oil (Mauritia flexuosa) Originated from the Brazilian Cerrado: Physicochemical, Thermal-Oxidative and Nutritional Implications. J Braz Chem Soc. 2012;23(2):212–9.

  215. Lima AL dos S, Lima K dos SC, Coelho MJ, Silva JM, Godoy RL de O, Sidney P. Evaluation of gamma irradiation effects on carotenoids, ascorbic acid and sugar contents of buriti fruit (Mauritia flexuosa L.); Avaliacao dos efeitos da radiacao gama nos teores de carotenoides, acido ascorbico e acucares do fruto Buriti do Brejo (Mauritia flexuosa L.). Acta Amazon. 2009;39(3):649–54.

  216. Becker FS, Damiani C, de Melo AAM, Borges PRS, de Barros Vilas Boas EV. Incorporation of Buriti Endocarp Flour in Gluten-free Whole Cookies as Potential Source of Dietary Fiber. Plant Foods Hum Nutr [Internet]. 2014 [cited 2023 Aug 26];69(4):344–50. Available from: https://link.springer.com/article/10.1007/s11130-014-0440-y.

  217. Vásquez-Ocmín PG, Alvarado LF, Solís VS, Torresb RP, Mancini-Filhob J. Chemical characterization and oxidative stability of the oils from three morphotypes of Mauritia flexuosa L.f, from the Peruvian Amazon. Grasas y Aceites. 2010;61(4):390–7.

  218. Aquino J de S, Batista KS, Araujo-Silva G, dos Santos DC, de Brito NJN, López JA, et al. Antioxidant and Lipid-Lowering Effects of Buriti Oil (Mauritia flexuosa L.) Administered to Iron-Overloaded Rats. Molecules [Internet]. 2023 [cited 2023 Aug 26];28(6):2585. Available from: https://www.mdpi.com/1420-3049/28/6/2585/htm.

  219. Aquino JDS, Vasconcelos MHDA, Pessoa DCNDP, Soares JKB, Prado JPDS, Mascarenhas RDJ, et al. Intake of cookies made with buriti oil (Mauritia flexuosa) improves vitamin A status and lipid profiles in young rats. Food Funct [Internet]. 2016 [cited 2023 Aug 26];7(10):4442–50. Available from: https://pubs.rsc.org/en/content/articlehtml/2016/fo/c6fo00770h.

  220. Bicalho AH, do Santos FR, Moreira DC, Oliveira LP, Machado AS, Farias L, et al. Liver Damage Produced by Malnutrition is Improved by Dietary Supplementation in Mice: Assessment of a Supplement Based on Buriti (A Cerrado Fruit) and Dairy By-products. Recent Pat Food Nutr Agric. 2021;12(1):29–35.

  221. Becker MM, Mandaji CM, Catanante G, Marty JL, Nunes GS. Mineral and bromatological assessment and determination of the antioxidant capacity and bioactive compounds in native Amazon fruits. Brazilian Journal of Food Technology [Internet]. 2018 [cited 2023 Aug 26];21. Available from: https://www.scienceopen.com/document?vid=e846809b-b60d-4038-a37d-53d6583942bb.

  222. Serbin GM, de Barros Pinangé DS, Machado RM, Vasconcelos S, Amorim BS, Clement CR. Relationship between fruit phenotypes and domestication in hexaploid populations of biribá (Annona mucosa) in Brazilian Amazonia. PeerJ [Internet]. 2023 [cited 2023 Aug 26];11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879159/.

  223. Fernandez IM, Chagas EA, Melo Filho AADE, Saravia SAM, Santos RC, Chagas PC, et al. Evaluation of total phenolic compounds and antioxidant activity in amazon fruit. Chem Eng Trans. 2018;64:649–54.

    Google Scholar 

  224. Fernández IM, Edvan AC, Maldonado SAS, Takahashi JA, Alemán RS, de Melo Filho AA, et al. Antimicrobial activity and acetilcolinesterase inhibition of oils and Amazon fruit extracts. J Med Plants Res. 2020;14(3):88–97.

    Article  Google Scholar 

  225. Chávez D, Acevedo LA, Mata R. Jimenezin, a Novel Annonaceous Acetogenin from the Seeds of Rollinia mucosa Containing Adjacent Tetrahydrofuran−Tetrahydropyran Ring Systems†,1. J Nat Prod [Internet]. 1998 [cited 2023 Aug 26];61(4):419–21. Available from: https://pubs.acs.org/doi/abs/10.1021/np970510f.

  226. Chávez D, Acevedo LA, Mata R. Tryptamine Derived Amides and Acetogenins from the Seeds of Rollinia mucosa1. J Nat Prod [Internet]. 1999 [cited 2023 Aug 26];62(8):1119–22. Available from: https://pubs.acs.org/doi/epdf/10.1021/np990118x.

  227. Jacobo-Herrera N, Pérez-Plasencia C, Castro-Torres VA, Martínez-Vázquez M, González-Esquinca AR, Zentella-Dehesa A. Selective Acetogenins and Their Potential as Anticancer Agents. Front Pharmacol. 2019;18(10): 447551.

    Google Scholar 

  228. Lim TK. Edible medicinal and non-medicinal plants. Netherlands: Edible Medicinal and Non-Medicinal Plants. Springer; 2012. p. 1–738.

    Book  Google Scholar 

  229. França CV, Perfeito JPS, Resck IS, Gomes SM, Fagg CW, Castro CFS, et al. Potential radical-scavenging activity of Pouteria caimito leaves extracts. J Appl Pharm Sci. 2016;6(7):184–8.

    Article  Google Scholar 

  230. Seixas FRF, Kempfer Bassoli B, Borghi Virgolin L, Chancare Garcia L, Soares Janzantti N. Physicochemical properties and effects of fruit pulps from the amazon biome on physiological parameters in rats. Nutrients [Internet]. 2021 [cited 2023 Aug 26];13(5):1484. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146226/.

  231. Meira NA, Klein LC, Rocha LW, Quintal ZM, Monache FD, Cechinel Filho V, et al. Anti-inflammatory and anti-hypersensitive effects of the crude extract, fractions and triterpenes obtained from Chrysophyllum cainito leaves in mice. J Ethnopharmacol. 2014;151(2):975–83.

    Article  PubMed  Google Scholar 

  232. Stenvinkel P, Shiels PG, Johnson RJ. Lessons from evolution by natural selection: An unprecedented opportunity to use biomimetics to improve planetary health. J Environ Manage. 2023;15(328):116981.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the Conselho Nacional de Pesquisa (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Funding

Conselho Nacional de Pesquisa (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) support Denise Mafra research.

Author information

Authors and Affiliations

Authors

Contributions

Ligia S Lima and Denise Mafra performed conceptualization and design. Material preparation, data collection, writing, and analysis were performed by Ligia S Lima, Márcia Ribeiro, Ludmila FMF Cardozo, Nara X Moreira, Peter Stenvinkel, and Denise Mafra. Writing—review and editing were performed by all authors. Denise Mafra performed supervision. L.S.L.: Design Research, Conducted Research, Analyzed Data, and Wrote Paper. M.R.; L.F.M.F.C.; N.X.M.; P.S.: Design Research, Conducted Research, and Wrote Paper. A.J.T.: Analyzed Data. D.M.: Design Research, Conducted Research, Analyzed Data, Wrote Paper, and Had Primary Responsibility for Final Content. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Denise Mafra.

Ethics declarations

Conflict of Interest

The authors declare no conflict interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, L.S., Ribeiro, M., Cardozo, L.F.M.F. et al. Amazonian Fruits for Treatment of Non-Communicable Diseases. Curr Nutr Rep (2024). https://doi.org/10.1007/s13668-024-00553-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13668-024-00553-9

Keywords

Navigation