Skip to main content

Advertisement

Log in

Current analytical trends of abuse of tramadol and its forensic significance

  • Mini Review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Introduction

The utilization and misuse of prescription and controlled medications are expanding globally. However, the kind of substance abused may contrast from one country to another, but few drugs expand their horizons due to misused capabilities, expansion of the darknet, and increase in the Internet Connecting World. One of them is tramadol, a widely misused drug worldwide, which enforcement agencies recently noticed. In treating moderate to severe pain, a racemic combination of tramadol is employed. The non-medical utilization of narcotic drugs, i.e., tramadol, is a quick arising general medical issue prompting expanding calls for planning alterations to existing policies, reconnaissance, research, and wellbeing advancement measures. Tramadol addicts typically have a history of substance usage, and studies show that the number of tramadol abusers is increasing, particularly in some Middle Eastern Nations.

Method

This review article finds the trends of analytical methods toward identification in pharmaceutical preparation and toxicological samples such as hair, urine, blood, and saliva. In the last 20 years, various analytical tools such as UV–visible spectroscopy, HPTLC, HPLC, LC–MS, GC, GC–MS, NMR, Fluorescence Spectroscopy, Capillary Electrophoresis, Electrochemical sensors have been used for the identification of drugs in pharmaceutical preparation and toxicological samples. Forensic Scientists can only rely on quick and easy methods to perform.

Result and discussion

This evaluation aims to give forensic scientists, pharmaceutical companies, and toxicologists the best solution for identifying tramadol acquired in the chemistry and toxicological divisions of various laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ODMT:

Ortho desmethyl tramadol

NDMT:

N-desmethyl tramadol

NODMT:

N-O-desmethyl tramadol

DDD:

Defined daily dosages

NDPS act:

Narcotic drugs, and psychotropic substances act

IS:

Internal standards

References

  1. Dayer P, Desmeules J, Collart L (1997) Pharmacologie du tramadol. Drugs 53(Supplement 2):18–24. https://doi.org/10.2165/00003495-199700532-00006

    Article  CAS  PubMed  Google Scholar 

  2. Wiffen PJ, Derry S, Moore RA (2017) Tramadol with or without paracetamol (acetaminophen) for cancer pain. Cochrane Database Syst Rev 16(5):CD012508. Doi:https://doi.org/10.1002/14651858.cd012508.pub2

  3. Grond S, Sablotzki A (2004) Clinical pharmacology of tramadol. Clin Pharmacokinet 43(13):879–923. https://doi.org/10.2165/00003088-200443130-00004

    Article  CAS  PubMed  Google Scholar 

  4. Sheikholeslami B, Jamali B, Rouini M (2016) Tramadol, usage, misuse, and addiction processes. Neuropathol Drug Addict Substance Misuse 8:407–416. https://doi.org/10.1016/b978-0-12-800634-4.00039-1

    Article  Google Scholar 

  5. Zhang H, Liu Z (2013) The investigation of tramadol dependence with no history of substance abuse: a cross-sectional survey of spontaneously reported cases in Guangzhou City. China BioMed Res Int 2013:1–6. https://doi.org/10.1155/2013/283425

    Article  CAS  Google Scholar 

  6. Fuseini A, Afizu A, Yakubu YH, Nachinab G (2019) Facilitators to the continuous abuse of tramadol among the youth: a qualitative study in Northern Ghana. Nurs Open 6(4):1388–1398. https://doi.org/10.1002/nop2.353

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smyj R, Wang XP, Han F (2013) Tramadol hydrochloride. Prof drug substances excip related methodol 38:463–494. https://doi.org/10.1016/b978-0-12-407691-4.00011-3

    Article  CAS  Google Scholar 

  8. Dayer P, Collart L, Desmeules J (1994) The pharmacology of tramadol. Drugs 47(Supplement 1):3–7. https://doi.org/10.2165/00003495-199400471-00003

    Article  CAS  PubMed  Google Scholar 

  9. Subedi M, Bajaj S, Kumar MS, Mayur YC (2019) An overview of tramadol and its usage in pain management and future perspective. Biomed Pharmacother 111:443–451. https://doi.org/10.1016/j.biopha.2018.12.085

    Article  CAS  PubMed  Google Scholar 

  10. Vadivelu N, Chang D, Helander EM, Bordelon GJ, Kai A, Kaye AD, Julka I (2017) Ketorolac, oxymorphone, tapentadol, and tramadol. Anesthesiol Clin 35(2):e1–e20. https://doi.org/10.1016/j.anclin.2017.01.001

    Article  PubMed  Google Scholar 

  11. Sheikholeslami B, Torkamanian M, Ardakani YH, Jamali B, Rouini M (2016) Assays for tramadol and its metabolites. Neuropathol Drug Addict Subst Misuse 243:631–645. https://doi.org/10.1016/b978-0-12-800634-4.00064-0

    Article  Google Scholar 

  12. Bravo L, Mico JA, Berrocoso E (2017) Discovery and development of tramadol for the treatment of pain. Expert Opin Drug Discov 12(12):1281–1291. https://doi.org/10.1080/17460441.2017.1377697

    Article  CAS  PubMed  Google Scholar 

  13. Dunn KE, Bergeria CL, Huhn AS, Strain EC (2019) A systematic review of laboratory evidence for the abuse potential of tramadol in humans. Front Psych 10:704. https://doi.org/10.3389/fpsyt.2019.00704

    Article  Google Scholar 

  14. Holmstedt A, Olsson MO, Håkansson A (2020) Clinical characteristics distinguishing tramadol-using adolescents from other substance-using adolescents in an out-patient treatment setting. Addict Behav Rep 11:100272. https://doi.org/10.1016/j.abrep.2020.100272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jalali S, Thomas D, Shetty P, Cooper JC (2017) Higher regulatory control of tramadol to prevent its abuse and dependence. J Drug Policy Anal 10(2). Doi:https://doi.org/10.1515/jdpa-2016-0008

  16. Drug Enforcement Administration, Department of Justice (2014). https://www.deadiversion.usdoj.gov/fed_regs/rules/2014/fr0702.htm

  17. Sweileh WM, Shraim NY, Zyoud SH, Al-Jabi SW (2016) Worldwide research productivity on tramadol: a bibliometric analysis. Springer Plus: 5(1). Doi:https://doi.org/10.1186/s40064-016-2801-5

  18. ANI, Punjab Police seizes 10 lakh pharmaceutical drug tablets, smuggler held, (Punjab, India), Updated at July 16, 2019. https://www.business-standard.com/article/news-ani/punjab-police-seizes-10-lakh-pharmaceutical-drug-tablets-smuggler-held-119071601009_1.html

  19. Indian kanoon. https://indiankanoon.org/doc/34529702/

  20. TNN, 12 lakh tablets of opioid painkiller tramadol seized in Amritsar (Punjab, India), Updated on December 22, 2019. https://timesofindia.indiatimes.com/city/amritsar/12-lakh-tablets-of-opioid-painkiller-tramadol-seized-in-amritsar/articleshow/72923095.cms

  21. Indian kanoon. https://indiankanoon.org/doc/19907093/

  22. Bharat K, Punjab: 5 drug suppliers nabbed with 2.37 lakh Tramadol tablets, 76,000 Tramadol Capsules, (Punjab, India), September 02, 2021. https://timesofindia.indiatimes.com/city/chandigarh/punjab-5-drug-suppliers-nabbed-with-2-37-lakh-tramadol-tablets-76000-tramadol-capsules/articleshow/85870018.cms

  23. Zabihi E, Hoseinzaadeh A, Emami M, Mardani M, Mahmoud B, Akbar MA (2011) Potential for tramadol abuse by patients visiting pharmacies in Northern Iran. Substance Abuse Res Treat 5:11–15. https://doi.org/10.4137/sart.s6174

    Article  Google Scholar 

  24. Meyyanathan SN, Kumar P, Suresh B (2003) Analysis of tramadol in pharmaceutical preparations by high-performance thin layer chromatography. J Sep Sci 26(15–16):1359–1362. https://doi.org/10.1002/jssc.200301541

    Article  CAS  Google Scholar 

  25. Krzek J, Starek M (2004) Quality assessment for tramadol in pharmaceutical preparations with thin layer chromatography and densitometry. Biomed Chromatogr 18(8):589–599. https://doi.org/10.1002/bmc.361

    Article  CAS  PubMed  Google Scholar 

  26. Kartinasari WF, Palupi T, Indrayanto G (2004) HPLC Determination and validation of tramadol hydrochloride in capsules. J Liq Chromatogr Relat Technol 27(4):737–744. https://doi.org/10.1081/jlc-120028261

    Article  CAS  Google Scholar 

  27. Belal T, Awad T, Clark R (2009) Determination of paracetamol and tramadol hydrochloride in pharmaceutical mixture using HPLC and GC-MS. J Chromatogr Sci 47(10):849–854. https://doi.org/10.1093/chromsci/47.10.849

    Article  CAS  PubMed  Google Scholar 

  28. Abu-Shawish HM, Ghalwa NA, Zaggout FR, Saadeh SM, Al-Dalou AR, Assi AAA (2010) Improved determination of tramadol hydrochloride in biological fluids and pharmaceutical preparations utilizing a modified carbon paste electrode. Biochem Eng J 48(2):237–245. https://doi.org/10.1016/j.bej.2009.10.019

    Article  CAS  Google Scholar 

  29. Babaei A, Taheri AR, Afrasiabi M (2011) A multi-walled carbon nanotube-modified glassy carbon electrode as a new sensor for the sensitive simultaneous determination of paracetamol and tramadol in pharmaceutical preparations and biological fluids. J Braz Chem Soc 22(8):1549–1558. https://doi.org/10.1590/s0103-50532011000800020

    Article  CAS  Google Scholar 

  30. Karunakaran K, Navaneethan G, Elango K (2012) Development and validation of a stability-indicating RP-HPLC method for simultaneous determination of paracetamol, tramadol hcl and domperidone in a combined dosage form. Trop J Pharm Res 11(1). Doi:https://doi.org/10.4314/tjpr.v11i1.13

  31. Ahmad M, El Z, Abdel-Latif MS (2015) Simultaneous Determination of paracetamol and tramadol in pharmaceutical tablets by derivative UV-Vis absorption spectrophotometry. Open Anal Chem J 8:1–6. https://doi.org/10.2174/1874065001508010001

    Article  CAS  Google Scholar 

  32. Glavanovic S, Glavanovic M, Tomisic V (2016) Simultaneous quantitative determination of paracetamol and tramadol in tablet formulation using UV spectrophotometry and chemometric methods. Spectrochim Acta Part A Mol Biomol Spectrosc 157:258–264. https://doi.org/10.1016/j.saa.2015.12.020

    Article  CAS  Google Scholar 

  33. Sarkany A, Hancu G, Dragut C, Modroiu A, Barabas-Hajdu A (2019) Capillary electrophoresis methods for the determination of tramadol: a review. Pharm Sci 25(4):278–286. https://doi.org/10.15171/PS.2019.50

    Article  Google Scholar 

  34. Ahmed HM, Elshamy YS, Talaat W, Labib HF, Belal TS (2019) Simultaneous analysis of chlorzoxazone, diclofenac sodium, and tramadol hydrochloride in presence of three potential impurities using validated HPLC-DAD and HPTLC methods. Microchem J 153:104505. https://doi.org/10.1016/j.microc.2019.104505

    Article  CAS  Google Scholar 

  35. Kaur M, Mittal SK, Chawla RK (2022) Simultaneous estimation of tramadol and piroxicam by UV spectrophotometer and RP-HPLC. Mater Today Proc 48(5):1735–1739

    Article  CAS  Google Scholar 

  36. Deiminiat B, Rounaghi GH, Arbab-Zavar MH (2017) Development of a new electrochemical imprinted sensor based on poly-pyrrole, sol–gel and multiwall carbon nanotubes for determination of tramadol. Sens Actuators B Chem 238:651–659. https://doi.org/10.1016/j.snb.2016.07.110

    Article  CAS  Google Scholar 

  37. Bagheri H, Shirzadmehr A, Rezaei M, Khoshsafar H (2017) Determination of tramadol in pharmaceutical products and biological samples using a new nanocomposite carbon paste sensor based on decorated nanographene/tramadol-imprinted polymer nanoparticles/ionic liquid. Ionics 24(3):833–843. https://doi.org/10.1007/s11581-017-2252-1

    Article  CAS  Google Scholar 

  38. Sarkany A, Hancu G, Carje A, Draguț C, Papp LA (2019) Chiral separation of tramadol enantiomers by capillary electrophoresis using cyclodextrins as chiral selectors and experimental design method optimization. Chem Pap 73:2363–2370. https://doi.org/10.1007/s11696-019-00789

    Article  CAS  Google Scholar 

  39. Foroughi MM, Jahani S, Hassani Nadiki H (2019) Lanthanium doped fern-like CuO nanoleaves/MWCNTs modified glassy carbon electrode for simultaneous determination of tramadol and acetaminophen. Sens Actuators B Chem 282:560–570. https://doi.org/10.1016/j.snb.2019.01.069

    Article  CAS  Google Scholar 

  40. Abdel-Megied AM, Badr El-din KM (2019) Development of a novel LC- MS/MS method for detection and quantification of tramadol hydrochloride in presence of some mislabeled drugs: application to counterfeit study. Biomed Chromatogr 33(6):e4486. https://doi.org/10.1002/bmc.4486

    Article  CAS  PubMed  Google Scholar 

  41. Memon SA, Hassan D, Buledi JA, Solangi AR, Memon SQ, Palabiyik IM (2020) Plant material protected cobalt oxide nanoparticles: sensitive electro-catalyst for tramadol detection. Microchem J 159:105480. https://doi.org/10.1016/j.microc.2020.105480

    Article  CAS  Google Scholar 

  42. Dehdashti A, Babaei A (2020) Designing and characterization of a novel sensing platform based on Pt doped NiO/MWCNTs nanocomposite for enhanced electrochemical determination of epinephrine and tramadol simultaneously. J Electroanal Chem 862:113949. https://doi.org/10.1016/j.jelechem.2020.113949

    Article  CAS  Google Scholar 

  43. Phonchai A, Pinsrithong S, Janchawee B, Prutipanlai S, Botpiboon O, Keawpradub N (2021) Simultaneous determination of abused prescription drugs by simple dilute-and-shoot gas chromatography—flame ionization detection (GC-FID). Anal Lett 54:716–728. https://doi.org/10.1080/00032719.2020.1779738

    Article  CAS  Google Scholar 

  44. Abdel Moneim MM, Hamdy MMA (2021) Green spectrofluorimetric methods for tramadol assay with ibuprofen or chlorzoxazone: comparison of greenness profiles. Luminescence 36:1–9. https://doi.org/10.1002/bio.3969

    Article  CAS  Google Scholar 

  45. Aghamiri Z, Safaei M, Shishehbor MR (2021) Highly sensitive kinetic spectrophotometric method for tramadol trace level detection and process optimization using response surface methodology. J Chin Chem Soc 68(1):95–105. https://doi.org/10.1002/jccs.202000178

    Article  CAS  Google Scholar 

  46. Ertugrul KS, Allahverdiyeva ES, Yardim Y, Serb J (2020) Determination of tramadol in pharmaceutical forms and urine samples using a boron-doped diamond electrode. J Serb Chem Soc 85:923–937. https://doi.org/10.2298/JSC190906138K

    Article  Google Scholar 

  47. Bagherinasab Z, Beitollahi H, Yousefi M, Bagherzadeh M, Hekmati M (2020) Rapid sol gel synthesis of BaFe12O19 nanoparticles: an excellent catalytic application in the electrochemical detection of tramadol in the presence of acetaminophen. Microchem J 156:104803. https://doi.org/10.1016/j.microc.2020.104803

    Article  CAS  Google Scholar 

  48. Kimani MM, Lanzarotta A, Batson JS (2020) Trace level detection of select opioids (fentanyl, hydrocodone, oxycodone, and tramadol) in suspect pharmaceutical tablets using surface-enhanced Raman scattering (SERS) with handheld devices. J Forensic Sci 66:491–504. https://doi.org/10.1111/1556-4029.14600

    Article  CAS  PubMed  Google Scholar 

  49. Almalki AH, Ali NA, Elroby FA, El Ghobashy MR, Emam AA, Naguib IA (2021) ESI–LC–MS/MS for therapeutic drug monitoring of binary mixture of pregabalin and tramadol: human plasma and urine applications. Separations 8(2):21. https://doi.org/10.3390/separations8020021

    Article  CAS  Google Scholar 

  50. Borive MA, Kindenge JM, Baruti ET, Bakiantima EN, Agasa SB, Hubert P, Djangeinga RM (2021) Quality control of tramadol in kisangani: development, validation, and application of a uv-vis spectroscopic method. Am J Anal Chem 12:295–309. Doi: https://doi.org/10.4236/ajac.2021.128018

  51. Akula G, Sapavatu SN, Jadi RK, Battineni JK, Boggula N (2021) Analytical method development and validation for the estimation of tramadol in bulk and its formulation by UV-Visible Spectroscopy. J Adv Sci Res 12:77–83

    CAS  Google Scholar 

  52. Pereira FJ, Rodriguez-Cordero A, Lopez R, Robles LC, Aller AJ (2021) Development and validation of an rp-hplc-pda method for determination of paracetamol, caffeine and tramadol hydrochloride in pharmaceutical formulations. Pharmaceuticals 14(5):466. https://doi.org/10.3390/ph14050466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kozak J, Tyszczuk-Rotko K, Wojciak M, Sowa I (2021) Electrochemically Activated screen-printed carbon sensor modified with anionic surfactant (aSPCE/SDS) for simultaneous determination of paracetamol. Diclofenac Tramadol Mater 14(13):3581. https://doi.org/10.3390/ma14133581

    Article  CAS  Google Scholar 

  54. Patil MS, Rane SS, Chaudhari ME, Chaudhari RY, Patil VR (2021) Development and validation of analytical methods for simultaneous estimation of paracetamol and tramadol in combine dosage form. World J Pharm Res 10:1224–1233. https://doi.org/10.20959/wjpr20215-20198

    Article  CAS  Google Scholar 

  55. Garg U, Cooley C (2019) Testing of drugs of abuse in oral fluid, sweat, hair, and nail. Critical Issues Alcohol Drugs Abuse Test 44:405–427. https://doi.org/10.1016/b978-0-12-815607-0.00028-9

    Article  Google Scholar 

  56. Faria J, Barbosa J, Moreira R, Queiros O, Carvalho F, Dinis-Oliveira RJ (2018) Comparative pharmacology and toxicology of tramadol and tapentadol. Eur J Pain 22(5):827–844. https://doi.org/10.1002/ejp.1196

    Article  CAS  PubMed  Google Scholar 

  57. Tao Q, Stone DJ, Borenstein MR, Jean-Bart V, Codd EE, Coogan TP, Raffa RB (2001) Gas chromatographic method using nitrogen–phosphorus detection for the measurement of tramadol and its O-desmethyl metabolite in plasma and brain tissue of mice and rats. J Chromatogr B Biomed Sci Appl 763(1–2):165–171. https://doi.org/10.1016/s0378-4347(01)00388-7

    Article  CAS  PubMed  Google Scholar 

  58. Nobilis M, Kopecky J, Kvetina J, Chladek J, Svoboda Z, Vorıisek V, Kunes J (2002) High-performance liquid chromatographic determination of tramadol and its O-desmethylated metabolite in blood plasma. J Chromatogr A 949(1–2):11–22. https://doi.org/10.1016/s0021-9673(01)01567-9

    Article  CAS  PubMed  Google Scholar 

  59. Hadidi KA, Almasad JK, Al-Nsour T, Abu-Ragheib S (2003) Determination of tramadol in hair using solid-phase extraction and GC–MS. Forensic Sci Int 135(2):129–136. https://doi.org/10.1016/s0379-0738(03)00196-8

    Article  CAS  PubMed  Google Scholar 

  60. Recommendations for hair testing in forensic cases (2004) Forensic Sci Int 145(2–3):83–84. Doi:https://doi.org/10.1016/j.forsciint.2004.04.022

  61. Sha YF, Shen S, Duan GL (2005) Rapid determination of tramadol in human plasma by headspace solid-phase microextraction and capillary gas chromatography–mass spectrometry. J Pharm Biomed Anal 37(1):143–147. https://doi.org/10.1016/j.jpba.2004.09.050

    Article  CAS  PubMed  Google Scholar 

  62. Gu Y, Fawcett J (2005) Improved HPLC method for the simultaneous determination of tramadol and O-desmethyltramadol in human plasma. J Chromatogr B 821(2):240–243. https://doi.org/10.1016/j.jchromb.2005.05.003

    Article  CAS  Google Scholar 

  63. Rouini MR, Ardakani YH, Soltani F, Aboul-Enein HY, Foroumadi A (2006) Development and validation of a rapid HPLC method for simultaneous determination of tramadol, and its two main metabolites in human plasma. J Chromatogr B 830(2):207–211. https://doi.org/10.1016/j.jchromb.2005.10.039

    Article  CAS  Google Scholar 

  64. Ardakani YH, Rouini MR (2007) Improved liquid chromatographic method for the simultaneous determination of tramadol and its three main metabolites in human plasma, urine and saliva. J Pharm Biomed Anal 44(5):1168–1173. https://doi.org/10.1016/j.jpba.2007.04.012

    Article  CAS  PubMed  Google Scholar 

  65. De Decker K, Cordonnier J, Jacobs W, Coucke V, Schepens P, Jorens PG (2008) Fatal intoxication due to tramadol alone. Forensic Sci Int 175(1):79–82. https://doi.org/10.1016/j.forsciint.2007.07.0

    Article  PubMed  Google Scholar 

  66. Ebrahimzadeh H, Yamini Y, Sedighi A, Rouini MR (2008) Determination of tramadol in human plasma and urine samples using liquid phase microextraction with back extraction combined with high performance liquid chromatography. J Chromatogr B 863(2):229–234. https://doi.org/10.1016/j.jchromb.2008.01.005

    Article  CAS  Google Scholar 

  67. Curticapean A, Muntean D, Curticapean M, Dogaru M, Vari C (2008) Optimized HPLC method for tramadol and O-desmethyl tramadol determination in human plasma. J Biochem Biophys Methods 70(6):1304–1312. https://doi.org/10.1016/j.jprot.2008.01.012

    Article  CAS  PubMed  Google Scholar 

  68. Liu P, Liang S, Wang BJ, Guo RC (2009) Development and validation of a sensitive LC-MS method for the determination of tramadol in human plasma and urine. Eur J Drug Metab Pharmacokinet 34(3–4):185–192. https://doi.org/10.1007/bf03191172

    Article  PubMed  Google Scholar 

  69. Barroso M, Dias M, Vieira DN, Lopez-Rivadulla M, Queiroz JA (2010) Simultaneous quantitation of morphine, 6-acetylmorphine, codeine, 6-acetylcodeine and tramadol in hair using mixed-mode solid-phase extraction and gas chromatography–mass spectrometry. Anal Bioanal Chem 396(8):3059–3069. https://doi.org/10.1007/s00216-010-3499-9

    Article  CAS  PubMed  Google Scholar 

  70. Javanbakht M, Attaran AM, Namjumanesh MH, Esfandyari-Manesh M, Akbari-adergani B (2010) Solid-phase extraction of tramadol from plasma and urine samples using a novel water-compatible molecularly imprinted polymer. J Chromatogr B 878(20):1700–1706. https://doi.org/10.1016/j.jchromb.2010.04.006

    Article  CAS  Google Scholar 

  71. Cooper GAA, Kronstrand R, Kintz P (2012) Society of Hair Testing guidelines for drug testing in hair. Forensic Sci Int 218(1–3):20–24. https://doi.org/10.1016/j.forsciint.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  72. Madry MM, Rust KY, Guglielmello R, Baumgartner MR, Kraemer T (2012) Metabolite to parent drug concentration ratios in hair for the differentiation of tramadol intake from external contamination and passive exposure. Forensic Sci Int 223(1–3):330–334. https://doi.org/10.1016/j.forsciint.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  73. Kronstrand R, Forsman M, Roman M (2013) A Screening method for 30 drugs in hair using ultrahigh-performance liquid chromatography time-of-flight mass spectrometry. Ther Drug Monit 35(3):288–295. https://doi.org/10.1097/ftd.0b013e3182884528

    Article  CAS  PubMed  Google Scholar 

  74. Pinho S, Oliveira A, Costa I, Gouveia CA, Carvalho F, Moreira RF, Dinis-Oliveira RJ (2013) Simultaneous quantification of tramadol and O-desmethyltramadol in hair samples by gas chromatography-electron impact/mass spectrometry. Biomed Chromatogr 27(8):1003–1011. https://doi.org/10.1002/bmc.2894

    Article  CAS  PubMed  Google Scholar 

  75. Verri P, Rustichelli C, Palazzoli F, Vandelli D, Marchesi F, Ferrari A, Licata M (2015) Tramadol chronic abuse: an evidence from hair analysis by LC tandem MS. J Pharm Biomed Anal 102:450–458. https://doi.org/10.1016/j.jpba.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  76. Chatterton C, Turner K, Klinger N, Etter M, Duez M, Cirimele V (2013) Interpretation of pharmaceutical drug concentrations in young children’s head hair. J Forensic Sci 59(1):281–286. https://doi.org/10.1111/1556-4029.12301

    Article  CAS  PubMed  Google Scholar 

  77. Habibollahi S, Tavakkoli N, Nasirian V, Khani H (2014) Determination of tramadol by dispersive liquid-liquid microextraction combined with GC–MS. J Chromatogr Sci 53(5):655–661. https://doi.org/10.1093/chromsci/bmu118

    Article  CAS  PubMed  Google Scholar 

  78. Yu H, Choi M, Jang JH, Park B, Seo YH, Jeong CH, Lee S (2018) Development of a column-switching LC-MS/MS method of tramadol and its metabolites in hair and application to a pharmacogenetic study. Arch Pharmacal Res 41(5):554–563. https://doi.org/10.1007/s12272-018-1013-7

    Article  CAS  Google Scholar 

  79. Nagaraju P, Kodali B, Datla PV, Kovvasu SP (2018) LC-MS/MS Quantification of tramadol and gabapentin utilizing solid phase extraction. Int J Anal Chem, pp 1–9. Doi:https://doi.org/10.1155/2018/1605950

  80. Cidem E, Teker T, Aslanoglu M (2019) A sensitive determination of tramadol using a voltammetric platform based on antimony oxide nanoparticles. Microchem J 147:879–885. https://doi.org/10.1016/j.microc.2019.04.018

    Article  CAS  Google Scholar 

  81. Atta NF, Galal A, Hassan SH (2019) Ultrasensitive determination of Nalbuphine and Tramadol narcotic analgesic drugs for postoperative pain relief using nano-cobalt oxide/ionic liquid crystal/carbon nanotubes-based electrochemical sensor. J Electroanal Chem 839:48–58. https://doi.org/10.1016/j.jelechem.2019.03.002

    Article  CAS  Google Scholar 

  82. Havig SM, Vindenes V, Oiestad AML, Rogde S, Thaulow CH (2021) Methadone, buprenorphine, oxycodone, fentanyl and tramadol in multiple postmortem matrices. J Anal Toxicol, bkab071. Doi: https://doi.org/10.1093/jat/bkab071

  83. Kintz P, Ameline A, Raul JS (2019) Disappearance of tramadol and THC-COOH in hair after discontinuation of abuse, two different profiles. J Anal Toxicol. Doi:https://doi.org/10.1093/jat/bkz004

  84. Johansen SS, Le Dang LTV, Nielsen MKK, Haage P, Kugelberg FC, Kronstrand R (2020) Temporal patterns of tramadol in hair after a single dose. Forensic Sci Int 316:110546. https://doi.org/10.1016/j.forsciint.2020.110546

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, LNJN NICFS NFSU Delhi Campus, for providing the opportunity to research at the National Institute of Criminology and Forensic Science, New Delhi. This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this systematic review.

Corresponding author

Correspondence to Priyanka Munjal.

Ethics declarations

Conflict of interest

The authors namely, Varsha Chauhan, Manisha, Priyanka Munjal, and Sudhir Kumar Shukla have declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, V., Manisha, Shukla, S.K. et al. Current analytical trends of abuse of tramadol and its forensic significance. Toxicol. Environ. Health Sci. 14, 111–129 (2022). https://doi.org/10.1007/s13530-022-00131-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-022-00131-y

Keywords

Navigation