Skip to main content

Advertisement

Log in

Optimal Protocol and Clinical Usefulness of 123I-MIBG Cardiac Scintigraphy for Differentiation of Parkinson’s Disease and Dementia with Lewy Body from Non-Parkinson’s Diseases

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

123I-metaiodobenzylguanidine (MIBG) cardiac scintigraphy was a useful imaging modality for the diagnosis of Parkinson’s disease, but its diagnostic performances were variably reported. This retrospective study compared the diagnostic performances and investigated the optimal imaging protocol of 123I-MIBG cardiac scintigraphy at various imaging time points in patients suspected of Parkinson’s disease in clinical practice.

Methods

In patients suspected of Parkinson’s disease, clinical records, autonomic function tests, and 123I-MIBG cardiac scintigraphy were retrospectively reviewed. Semi-quantitative parameters such as heart-to-mediastinum ratio (HMR) and washout rate (WR) were calculated and compared at 15 min, 1 h, 2 h, 3 h, and 4 h post-injection (p.i.). of 123I-MIBG cardiac scintigraphy. Group A consisted of Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), and dementia with Lewy body (DLB), and group B consisted of non-Parkinson’s diseases such as multiple system atrophy (MSA), progressive supranuclear palsy (PSP), drug-induced parkinsonism (DIP), essential tremor (ET), Parkinson-plus syndrome (PPS), and unspecified secondary parkinsonism (NA). The diagnostic performances of HMR and WR were compared for differentiation of group A from group B, and their clinical usefulness and optimal imaging time points were explored.

Results

Seventy-eight patients were included in group A (67 PD, 7 PDD, 4 DLB), and 18 patients were included in group B (5 MSA, 3 PSP, 2 DIP, 2 ET, 1 PPS, and 1 NA). Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value of HMR and WR were maximized at 4 h p.i., (82.1%, 85.7%, 82.6%, 97.0%, and 46.2%; cutoff threshold < 1.717; area under curve 0.8086) and at the time interval between 1 and 4 h p.i. (65.4%, 85.7%, 68.5%, 96.2%, and 30.8%; cutoff threshold > 24.1%; area under curve 0.8246), respectively, and PPVs of both HMR and WR persistently showed greater than 92.7% at earlier time points and shorter time intervals.

Conclusion

This study reassured that 4-h-delayed imaging is recommended for the best diagnostic performances in 123I-MIBG cardiac scintigraphy. Although it showed suboptimal diagnostic performances to differentiate PD, PDD, and DLB from non-Parkinson’s diseases, it can be useful as an auxiliary measure for the differential diagnosis in usual clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Iheagwam FN, Etefia SI. Recent advances on the management of Parkinson’s disease: a review. Int Res J Med Sci. 2019;1(1):1–11.

    Google Scholar 

  2. Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm. 2017;124(8):901–5.

    Article  PubMed  Google Scholar 

  3. Pagano G, Niccolini F, Politis M. Imaging in Parkinson’s disease. Clin Med. 2016;16(4):371–5.

    Article  Google Scholar 

  4. Park KJ, Lee H, Kim HA, Kang SY, Kim BJ, Nam TS, et al. Guidelines for autonomic function test. J Pain Auton Disord. 2013;2(2):56–65.

    Google Scholar 

  5. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS Clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–601.

    Article  PubMed  Google Scholar 

  6. Flotats A, Carrió I, Agostini D, Guludec DL, Marcassa C, el al. Proposal for standardization of 123I-metaiodobenzylguadinine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2010;37:1802–12.

    Article  PubMed  Google Scholar 

  7. Da Rocha ET, Alves WEFM, Verschure DO, Verberne HJ. The use of cardiac 123I-mIBG scintigraphy in clinical practice: the necessity to standardize! Int J Cardiovasc Sci. 2017;30(6):533–41.

    Google Scholar 

  8. Verschure DO, Nakajima K, Jacobson AF, Verberne HJ. 40 years anniversary of cardiac 123I-mIBG imaging: state of the heart. Curr Cardiovasc Imaging Rep. 2021;14:5.

    Article  Google Scholar 

  9. Kline RC, Swanson DP, Wieland DM, Thrall JH, Gross MD, Pitt B, et al. Myocardial imaging in man with I-123 meta-iodobenzylguanidine. J Nucl Med. 1981;22(2):129–32.

    CAS  PubMed  Google Scholar 

  10. Dae MW, William O’connell J, Botvinick EH, Ahearn T, Yee E, Huberty JP, et al. Scintigraphic assessment of regional cardiac adrenergic innervation. Circulation. 1989;79(3):634–44.

    Article  CAS  PubMed  Google Scholar 

  11. Gill JS, Hunter GJ, Gane G, Camm AJ. Heterogeneity of the human myocardial sympathetic innervation: in vivo demonstration by iodine 123-labeled meta-iodobenzylguanidine scintigraphy. Am Heart J. 1993;126:390–8.

    Article  CAS  PubMed  Google Scholar 

  12. De Marco T, Dae M, MSF Y-g, Kumar S, Sudhir K, Keith F, et al. Iodine-123 metaiodobenzylguanidine scintigraphic assessment of the transplanted human heart: evidence for late reinnervation. J Am Coll Cardiol. 1995;25(4):927–31.

    Article  PubMed  Google Scholar 

  13. Tsuchimochi S, Tamaki N, Tadamura E, Kawamoto M, Fujita T, Yonekura Y, et al. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by iodine-123-MIBG imaging. J Nucl Med. 1995;36(6):969–74.

    CAS  PubMed  Google Scholar 

  14. Merlet P, Benvenuti C, Moyse D, Pouillart F, Dubois-Randé JL, Duval AM, et al. Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med. 1999;40(6):917–23.

    CAS  PubMed  Google Scholar 

  15. Ogita H, Shimonagata T, Fukunami M, Kumagai K, Yamada T, Asano Y, et al. Prognostic significance of cardiac 123I metaiodobenzylguanidine imaging for mortality and morbidity in patients with chronic heart failure: a prospective study. Heart. 2001;86(6):656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kioka H, Yamada T, Mine T, Morita T, Tsukamoto Y, Tamaki S, et al. Prediction of sudden death in patients with mild-to-moderate chronic heart failure by using cardiac iodine-123 metaiodobenzylguanidine imaging. Heart. 2007;93(10):1213–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lemery R, Ben-Haim S, Wells G, Ruddy TD. I-123-Metaiodobenzylguanidine imaging in patients with atrial fibrillation undergoing cardiac mapping and ablation of autonomic ganglia. Heart Rhythm. 2017;14(1):128–32.

    Article  PubMed  Google Scholar 

  18. Clements IP, Kelkar AA, Garcia EV, Butler J, Chen J, Folks R, et al. Prognostic significance of 123I-mIBG SPECT myocardial imaging in heart failure: differences between patients with ischaemic and non-ischaemic heart failure. Eur Heart J Cardiovasc Imaging. 2016;17(4):384–90.

    Article  PubMed  Google Scholar 

  19. Dimitriu-Leen AC, Gimelli A, Al Younis I, Veltman CE, Verberne HJ, Wolterbeek R, et al. The impact of acquisition time of planar cardiac 123I-MIBG imaging on the late heart to mediastinum ratio. Eur J Nucl Med Mol Imaging. 2016;43(2):326–32.

    Article  PubMed  Google Scholar 

  20. Travin MI, Matsunari I, Thomas GS, Nakajima K, Yoshinaga K. How do we establish cardiac sympathetic nervous system imaging with 123I-mIBG in clinical practice? Perspectives and lessons from Japan and the US. J Nucl Cardiol. 2019;26(4):1434–51.

    Article  PubMed  Google Scholar 

  21. Sazonova SI, Atabekov TA, Batalov RE, Mishkina AI, Varlamova JV, Zavadovsky KV, et al. Prediction of appropriate ICD therapy in patients with ischemic heart failure. J Nucl Cardiol. 2022;29(2):680–91.

    Article  PubMed  Google Scholar 

  22. Seo M, Yamada T, Tamaki S, Watanabe T, Morita T, Furukawa Y, et al. Prognostic significance of cardiac I-123-metaiodobenzylguanidine imaging in patients with reduced, mid-range, and preserved left ventricular ejection fraction admitted for acute decompensated heart failure: a prospective study in Osaka Prefectural Acute Heart Failure Registry (OPAR). Eur Heart J Cardiovasc Imaging. 2021;22(1):58–66.

    Article  PubMed  Google Scholar 

  23. Kayama K, Yamada T, Tamaki S, Watanabe T, Morita T, Furukawa Y, et al. Incremental prognostic value of cardiac metaiodobenzylguanidine imaging over the co-morbid burden in acute decompensated heart failure. ESC Heart Fail. 2021;8(2):1167–77.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Satoh A, Serita T, Seto M, Tornita U, Satoh H, Iwanaga K, et al. Loss of 123I-MIBG uptake by the heart in Parkinson’s disease: assessment of cardiac sympathetic denervation and diagnostic value. J Nucl Med. 1999;40(3):371–5.

    CAS  PubMed  Google Scholar 

  25. Yoshita M. Differentiation of idiopathic Parkinson’s disease from striatonigral degeneration and progressive supranuclear palsy using iodine-123 meta-iodobenzylguanidine myocardial scintigraphy. J Neurol Sci. 1998;155(1):60–7.

    Article  CAS  PubMed  Google Scholar 

  26. Orimo S, Yogo M, Nakamura T, Suzuki M, Watanabe H. 123I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in α-synucleinopathies. Ageing Res Rev. 2016;30:122–33.

    Article  CAS  PubMed  Google Scholar 

  27. Taki J, Nakajima K, Hwang E, Matsunari I, Komai K, Yoshita M, et al. Peripheral sympathetic dysfunction in PD without autonomic failure is heart selective and disease specific. Eur J Nucl Med. 2000;27(5):566–73.

    Article  CAS  PubMed  Google Scholar 

  28. Braune S. The role of cardiac metaiodobenzylguanidine uptake in the differential diagnosis of parkinsonian syndromes. Clin Auton Res. 2001;11(6):351–5.

    Article  CAS  PubMed  Google Scholar 

  29. Nagayama H, Hamamoto M, Ueda M, Nagashima J, Katayama Y. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2005;76(2):249–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sawada H, Oeda T, Yamamoto K, Kitagawa N, Mizuta E, Hosokawa R, et al. Diagnostic accuracy of cardiac metaiodobenzylguanidine scintigraphy in Parkinson disease. Eur J Neurol. 2009;16(2):174–82.

    Article  CAS  PubMed  Google Scholar 

  31. Kikuchi A, Baba T, Hasegawa T, Sugeno N, Konno M, Takeda A. Differentiating Parkinson’s disease from multiple system atrophy by [123I]meta-iodobenzylguanidine myocardial scintigraphy and olfactory test. Parkinsonism Relat Disord. 2011;17(9):698–700.

    Article  PubMed  Google Scholar 

  32. Treglia G, Cason E, Stefanelli A, Cocciolillo F, di Giuda D, Fagioli G, et al. MIBG scintigraphy in differential diagnosis of Parkinsonism: a meta-analysis. Clin Auton Res. 2012;22(1):43–55.

    Article  PubMed  Google Scholar 

  33. Chung EJ, Kim SJ. 123I-metaiodobenzyl-guanidine myocardial scintigraphy in Lewy body-related disorders: a literature review. J Mov Disord. 2015;8(2):55–66.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Catalan M, Dore F, Polverino P, Bertolotti C, Sartori A, Antonutti L, et al. 123I-metaiodobenzylguanidine myocardial scintigraphy in discriminating degenerative parkinsonisms. Mov Disord Clin Pract. 2021;8(5):717–24.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shafie M, Mayeli M, Saeidi S, Mirsepassi Z, Abbasi M, Shafeghat M, et al. The potential role of the cardiac MIBG scan in differentiating the drug-induced Parkinsonism from Parkinson’s disease. Clin Park Relat Disord. 2022;6:100130.

    PubMed  PubMed Central  Google Scholar 

  36. Soman P, Travin MI, Gerson M, Cullom SJ, Thompson R. I-123 MIBG cardiac imaging. J Nucl Cardiol. 2015;22(4):677–85.

    Article  PubMed  Google Scholar 

  37. Vetrugno R, Liguori R, Cortelli P, Montagna P. Sympathetic skin response: basic mechanisms and clinical applications. Clin Auton Res. 2003;13(4):256–70.

    Article  PubMed  Google Scholar 

  38. Low PA, Tomalia VA, Park KJ. Autonomic function tests: some clinical applications. J Clin Neurol. 2013;9(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Park JY, Yang D, Yang HJ, Kim HA, Kim S, Heo D, et al. Quantitative autonomic function test in differentiation of multiple system atrophy from idiopathic Parkinson disease. Chin Med J. 2019;132(16):1919–24.

    Article  PubMed  PubMed Central  Google Scholar 

  40. R Core Team. R: a language and environment for statistical computing. Vienna: Austria; 2021. https://www.R-project.org/

    Google Scholar 

  41. Spiegel J. Diagnostic and pathophysiological impact of myocardial MIBG scintigraphy in Parkinson’s disease. Parkinsons Dis. 2010;2010:295346.

    PubMed  Google Scholar 

  42. Slaets S, van Acker F, Versijpt J, Hauth L, Goeman J, Martin JJ, et al. Diagnostic value of MIBG cardiac scintigraphy for differential dementia diagnosis. Int J Geriatr Psychiatry. 2015;30(8):864–9.

    Article  PubMed  Google Scholar 

  43. Roberts G, Durcan R, Donaghy PC, Lawley S, Ciafone J, Hamilton CA, et al. Accuracy of cardiac innervation scintigraphy for mild cognitive impairment with Lewy bodies. Neurology. 2021;96(23):e2801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakajima K, Bunko H, Taki J, Shimizu M, Muramori A, Hisada K. Quantitative analysis of 123I-meta-iodobenzylguanidine (MIBG) uptake in hypertrophic cardiomyopathy. Am Heart J. 1990;119(6):1329–37.

    Article  CAS  PubMed  Google Scholar 

  45. Wakasugi S, Inoue M, Tazawa S. Assessment of adrenergic neuron function altered with progression of heart failure. J Nucl Med. 1995;36(11):2069–74.

    CAS  PubMed  Google Scholar 

  46. Henneman MM, Bengel FM, van der Wall EE, Knuuti J, Bax JJ. Cardiac neuronal imaging: application in the evaluation of cardiac disease. J Nucl Cardiol. 2008;15(3):442–55.

    Article  PubMed  Google Scholar 

  47. Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, et al. A pooled analysis of multicenter cohort studies of 123I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging. 2013;6(7):772–84.

    Article  PubMed  Google Scholar 

  48. Katagiri A, Asahina M, Araki N, Poudel A, Fujinuma Y, Yamanaka Y, et al. Myocardial 123I-MIBG uptake and cardiovascular autonomic function in Parkinson’s disease. Parkinsons Dis. 2015;2015:805351.

    PubMed  PubMed Central  Google Scholar 

  49. Pérez T, Tijero B, Gabilondo I, Luna A, Llorens V, Berganzo K, et al. Cardiocirculatory manifestations in Parkinson’s disease patients without orthostatic hypotension. J Hum Hypertens. 2015;29(10):604–9.

    Article  PubMed  Google Scholar 

  50. Jeong YJ, Jeong JE, Cheon SM, Yoon BA, Kim JW, Kang DY. Relationship between the washout rate of I-123 MIBG scans and autonomic function in Parkinson’s disease. PLoS One. 2020;15(3):e0229860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gomperts SN. Lewy body dementias: dementia with Lewy bodies and Parkinson disease dementia. Continuum. 2016;22(2):435–63.

    PubMed  PubMed Central  Google Scholar 

Download references

Data Availability

All data and materials are only permitted to be temporarily stored in the secured storage and any sharing of them is not permitted by an institutional review board of Kangwon National University Hospital.

Funding

This study was supported by a 2020 Research Grant from Kangwon National University.

Author information

Authors and Affiliations

Authors

Contributions

All the study processes including study design, material preparation, data collection, manuscript writing, and revision were performed by the only author In Kook Chun.

Corresponding author

Correspondence to In Kook Chun.

Ethics declarations

Conflict of Interest

The author In Kook Chun declares that he has no conflict of interest.

Ethical Approval and Consent to Participate

This article is an original article made from the retrospective study approved by an institutional review board of Kangwon National University Hospital (reference number: KNUH-2022-09-010) and this study was performed in accordance with the ethical standards as laid down in the Helsinki Declaration as revised in 2013.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary file 1

Supplement Fig. S1 Examples of Differentiation of DLB from PD and PDD by Washout Rate (WR) (a) and K-MMSE (b). Statistical significance was displayed by asterisks; * for p < 0.05 and ** for p < 0.01.

Supplementary file 2

Supplement Table S1 Temporal Comparisons of Heart-to-Mediastinum Ratio and Washout Rate between Two Different Time Points or Intervals in either Group A or Group B

Supplementary file 3

Supplement Table S2 Intergroup Comparisons of Heart-to-Mediastinum Ratio and Washout Rate between Two Different Time Points or Intervals between Group A and Group B

Supplementary file 4

Supplement Table S3 Improved Diagnostic Performances for Differentiation of Group A from Group B by Adding Autonomic Function Tests

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, I.K. Optimal Protocol and Clinical Usefulness of 123I-MIBG Cardiac Scintigraphy for Differentiation of Parkinson’s Disease and Dementia with Lewy Body from Non-Parkinson’s Diseases. Nucl Med Mol Imaging 57, 145–154 (2023). https://doi.org/10.1007/s13139-023-00790-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-023-00790-w

Keywords

Navigation