Skip to main content

Advertisement

Log in

Minimally Invasive Breast Cancer: How to Find Early Breast Cancers

  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Breast cancer, affecting over 2 million women annually, stands as the most prevalent non-skin cancer worldwide and ranks as the second leading cause of death in women. The 5-year relative survival rate decreases to 86% for regional breast cancer and drops significantly to 30% for distant breast cancer. Therefore it is critical to detect breast cancer early at the localized stage to minimize the morbidity and mortality associated with the diagnosis.

Recent Findings

Considerable variability exists among radiologists in interpreting breast imaging, emphasizing the need for standardized guidelines to enhance reading accuracy and improve cancer detection rates. Factors influencing this variability encompass radiologists’ familiarity with subtle findings of early and minimal breast cancer on screening modalities. Additionally, technologist factors, radiologist education, environmental considerations, workflow optimization, and the integration of artificial intelligence all contribute to impacting cancer detection rates.

Summary

The interpretation of screening mammography and other imaging modalities is a complex process influenced by multiple factors. Radiologists must be cognizant of the diverse elements that can impact cancer detection for improved patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanislawek A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers. 2021;13(17):4287. https://doi.org/10.3390/cancers13174287. (Basel).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

    Article  PubMed  Google Scholar 

  3. Haber G, Ahmed NU, Pekovic V. Family history of cancer and its association with breast cancer risk perception and repeat mammography. Am J Public Health. 2012;102(12):2322–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet. 2001;358(9291):1389–99.

    Article  Google Scholar 

  5. Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast Cancer Statistics, 2022. CA A Cancer J Clin. 2022;72(6):524–41.

    Article  Google Scholar 

  6. Anttila A, Koskela J, Hakama M. Programme sensitivity and effectiveness of mammography service screening in Helsinki, Finland. J Med Screen. 2002;9(4):153–8.

    Article  CAS  PubMed  Google Scholar 

  7. Njor S, Nystrom L, Moss S, Paci E, Broeders M, Segnan N, et al. Breast cancer mortality in mammographic screening in Europe: a review of incidence-based mortality studies. J Med Screen. 2012;19(Suppl 1):33–41.

    Article  PubMed  Google Scholar 

  8. Hathaway C, Paetsch P, Li Y, Wu J, Asgarian S, Parker A, et al. Association of breast cancer screening behaviors with stage at breast cancer diagnosis and potential for additive multi-cancer detection via liquid biopsy screening: a claims-based study. Front Oncol. 2021;15(11):688455.

    Article  Google Scholar 

  9. Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast. 2022;01(66):15–23.

    Article  Google Scholar 

  10. Duffy SW, Tabar L, Yen AM, Dean PB, Smith RA, Jonsson H, et al. Mammography screening reduces rates of advanced and fatal breast cancers: results in 549,091 women. Cancer. 2020;126(13):2971–9.

    Article  PubMed  Google Scholar 

  11. Champaign JL, Cederbom GJ. Advances in breast cancer detection with screening mammography. Ochsner J. 2000;2(1):33–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. •• Lamb LR, Mohallem Fonseca M, Verma R, Seely JM. Missed breast cancer: effects of subconscious bias and lesion characteristics. Radiographics. 2020;40(4):941–60. (The article explores the impact of subconscious bias and lesion characteristics on the missed detection of breast cancer. It highlights how biases in medical professionals, coupled with certain characteristics of breast lesions, contribute to diagnostic errors in detecting breast cancer.)

    Article  PubMed  Google Scholar 

  13. Rodziewicz TL, Houseman B, Hipskind JE. Medical error reduction and prevention. StatPearls Treasure Island (FL): StatPearls Publishing LLC; 2023.

    Google Scholar 

  14. Monticciolo DL, Newell MS, Moy L, Lee CS, Destounis SV. Breast cancer screening for women at higher-than-average risk: updated recommendations from the ACR. J Am Coll Radiol. 2023;20(9):902–14.

    Article  PubMed  Google Scholar 

  15. Estrada SS. Review of the New American Cancer Society Guidelines for Breast Cancer Screening for women at average risk. J Adv Pract Oncol. 2016;7(5):563–6.

    PubMed  PubMed Central  Google Scholar 

  16. Wu JC, Hakama M, Anttila A, Yen AM, Malila N, Sarkeala T, et al. Estimation of natural history parameters of breast cancer based on non-randomized organized screening data: subsidiary analysis of effects of inter-screening interval, sensitivity, and attendance rate on reduction of advanced cancer. Breast Cancer Res Treat. 2010;122(2):553–66.

    Article  PubMed  Google Scholar 

  17. Tsapatsaris A, Babagbemi K, Reichman MB. Barriers to breast cancer screening are worsened amidst COVID-19 pandemic: a review. Clin Imaging. 2022;01(82):224–7.

    Article  Google Scholar 

  18. • Mootz A, Arjmandi F, Dogan BE, Evans WP. Health care disparities in breast cancer: the economics of access to screening, diagnosis, and treatment. J Breast Imaging. 2020;2(6):524–9. (This article examines healthcare disparities in breast cancer, focusing on the economic factors that affect access to screening, diagnosis, and treatment. It delves into the challenges and inequalities faced by different socioeconomic groups in accessing crucial aspects of breast cancer care.)

    Article  PubMed  Google Scholar 

  19. Ikeda DM, Birdwell RL, O’Shaughnessy KF, Brenner RJ, Sickles EA. Analysis of 172 subtle findings on prior normal mammograms in women with breast cancer detected at follow-up screening. Radiology. 2003;226(2):494–503.

    Article  PubMed  Google Scholar 

  20. Giess CS, Frost EP, Birdwell RL. Difficulties and errors in diagnosis of breast neoplasms. Semin Ultrasound CT MR. 2012;33(4):288–99.

    Article  PubMed  Google Scholar 

  21. Majid AS, de Paredes ES, Doherty RD, Sharma NR, Salvador X. Missed breast carcinoma: pitfalls and pearls. Radiographics. 2003;23(4):881–95.

    Article  PubMed  Google Scholar 

  22. Busby LP, Courtier JL, Glastonbury CM. Bias in radiology: the how and why of misses and misinterpretations. Radiographics. 2018;38(1):236–47.

    Article  PubMed  Google Scholar 

  23. Elmore JG, Jackson SL, Abraham L, Miglioretti DL, Carney PA, Geller BM, et al. Variability in interpretive performance at screening mammography and radiologists’ characteristics associated with accuracy. Radiology. 2009;253(3):641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bender CE, Bansal S, Wolfman D, Parikh JR. 2019 ACR Commission on Human Resources Workforce Survey. J Am Coll Radiol. 2020;17(5):673–5.

    Article  PubMed  Google Scholar 

  25. Linver MN, Paster SB, Rosenberg RD, Key CR, Stidley CA, King WV. Improvement in mammography interpretation skills in a community radiology practice after dedicated teaching courses: 2-year medical audit of 38,633 cases. Radiology. 1992;184(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  26. Geller BM, Bogart A, Carney PA, Sickles EA, Smith R, Monsees B, et al. Educational interventions to improve screening mammography interpretation: a randomized controlled trial. AJR Am J Roentgenol. 2014;202(6):586.

    Article  Google Scholar 

  27. Brennan PC, McEntee M, Evanoff M, Phillips P, O’Connor WT, Manning DJ. Ambient lighting: effect of illumination on soft-copy viewing of radiographs of the wrist. AJR Am J Roentgenol. 2007;188(2):177.

    Article  Google Scholar��

  28. Norweck JT, Seibert JA, Andriole KP, Clunie DA, Curran BH, Flynn MJ, et al. ACR-AAPM-SIIM technical standard for electronic practice of medical imaging. J Digit Imaging. 2013;26(1):38–52.

    Article  PubMed  Google Scholar 

  29. Ekpo EU, Alakhras M, Brennan P. Errors in mammography cannot be solved through technology alone. Asian Pac J Cancer Prev. 2018;19(2):291–301.

    PubMed  PubMed Central  Google Scholar 

  30. Perry N, Broeders M, de Wolf C, Tornberg S, Holland R, von Karsa L. European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth edition--summary document. Ann Oncol. 2008;19(4):614–22.

    Article  CAS  PubMed  Google Scholar 

  31. Pal S, Ikeda DM, Jesinger RA, Mickelsen LJ, Chen CA, Larson DB. Improving performance of mammographic breast positioning in an academic radiology practice. Am J Roentgenol. 2018;210(4):807–15.

    Article  Google Scholar 

  32. Popli MB, Teotia R, Narang M, Krishna H. Breast positioning during mammography: mistakes to be avoided. Breast Cancer. 2014;30(8):119–24 (Auckl).

    Google Scholar 

  33. Sweeney RI, Lewis SJ, Hogg P, McEntee MF. A review of mammographic positioning image quality criteria for the craniocaudal projection. Br J Radiol. 2018;91(1082):20170611.

    PubMed  PubMed Central  Google Scholar 

  34. Sharpe REJ, Venkataraman S, Phillips J, Dialani V, Fein-Zachary VJ, Prakash S, et al. Increased cancer detection rate and variations in the recall rate resulting from implementation of 3D digital breast tomosynthesis into a population-based screening program. Radiology. 2016;280(3):981.

    Article  PubMed  Google Scholar 

  35. Zuley ML, Guo B, Catullo VJ, Chough DM, Kelly AE, Lu AH, et al. Comparison of two-dimensional synthesized mammograms versus original digital mammograms alone and in combination with tomosynthesis images. Radiology. 2014;271(3):664–71.

    Article  PubMed  Google Scholar 

  36. Jiang Y, Nishikawa RM, Schmidt RA, Toledano AY, Doi K. Potential of computer-aided diagnosis to reduce variability in radiologists’ interpretations of mammograms depicting microcalcifications. Radiology. 2001;220(3):787–94.

    Article  CAS  PubMed  Google Scholar 

  37. Chan H, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. Adv Exp Med Biol. 2020;1213:3–21.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lang K, Josefsson V, Larsson A, Larsson S, Hogberg C, Sartor H, et al. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol. 2023;24(8):936–44.

    Article  PubMed  Google Scholar 

  39. Lamb LR, Lehman CD, Gastounioti A, Conant EF, Bahl M. Artificial Intelligence (AI) for screening mammography, from the AJR Special Series on AI Applications. Am J Roentgenol. 2022;219(3):369–80.

    Article  Google Scholar 

  40. Brahim M, Westerkamp K, Hempel L, Lehmann R, Hempel D, Philipp P. Automated assessment of breast positioning quality in screening mammography. Cancers. 2022;14(19):4704. https://doi.org/10.3390/cancers14194704. (Basel).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shen Y, Shamout FE, Oliver JR, Witowski J, Kannan K, Park J, et al. Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams. Nat Commun. 2021;12(1):5645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Witowski J, Heacock L, Reig B, Kang SK, Lewin A, Pysarenko K, et al. Improving breast cancer diagnostics with deep learning for MRI. Sci Transl Med. 2022;14(664):eabo4802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mann RM, Hooley R, Barr RG, Moy L. Novel approaches to screening for breast cancer. Radiology. 2020;297(2):266–85.

    Article  PubMed  Google Scholar 

  44. Rebolj M, Assi V, Brentnall A, Parmar D, Duffy SW. Addition of ultrasound to mammography in the case of dense breast tissue: systematic review and meta-analysis. Br J Cancer. 2018;118(12):1559–70.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang ZL, Xu JH, Li JL, Huang Y, Tang J. Comparison of automated breast volume scanning to hand-held ultrasound and mammography. Radiol Med. 2012;117(8):1287–93.

    Article  PubMed  Google Scholar 

  46. Jahed DA, Dekeyzer S, Vanwambeke K, Antic M, Vanhoenacker C, Vanhoenacker F. Automated Breast Ultrasound (ABUS): a pictorial essay of common artifacts and benign and malignant pathology. J Ultrason. 2022;22(91):e222–35.

    Article  PubMed  PubMed Central  Google Scholar 

  47. González-Huebra I, Elizalde A, García-Baizán A, Calvo M, Ezponda A, Martínez-Regueira F, et al. Is it worth to perform preoperative MRI for breast cancer after mammography, tomosynthesis and ultrasound? Magn Reson Imaging. 2019;57:317–22.

    Article  PubMed  Google Scholar 

  48. Chen H, Zhou J, Chen Q, Deng Y. Comparison of the sensitivity of mammography, ultrasound, magnetic resonance imaging and combinations of these imaging modalities for the detection of small (≤2 cm) breast cancer. Medicine. 2021;100(26):e26531 (Baltimore).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim S, Cho N, Hong H, Lee Y, Yoen H, Kim YS, et al. Abbreviated screening MRI for women with a history of breast cancer: comparison with full-protocol breast MRI. Radiology. 2022;305(1):36–45.

    Article  PubMed  Google Scholar 

  50. Lawson MB, Partridge SC, Hippe DS, Rahbar H, Lam DL, Lee CI, et al. Comparative performance of contrast-enhanced mammography, abbreviated breast MRI, and standard breast MRI for breast cancer screening. Radiology. 2023;308(2):e230576.

    Article  PubMed  Google Scholar 

  51. Berg WA, Zhang Z, Lehrer D, Jong RA, Pisano ED, Barr RG, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA. 2012;307(13):1394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shao H, Li B, Zhang X, Xiong Z, Liu Y, Tang G. Comparison of the diagnostic efficiency for breast cancer in Chinese women using mammography, ultrasound, MRI, and different combinations of these imaging modalities. J Xray Sci Technol. 2013;21(2):283–92.

    PubMed  Google Scholar 

  53. Chou C, Peng N, Chang T, Yang T, Hu C, Lin H, et al. Clinical roles of breast 3T MRI, FDG PET/CT, and breast ultrasound for asymptomatic women with an abnormal screening mammogram. J Chin Med Assoc. 2015;78(12):719–25.

    Article  PubMed  Google Scholar 

  54. Phalak KA, Milton DR, Yang WT, Bevers TB, Dogan BE. Supplemental ultrasound screening in patients with a history of lobular neoplasia. Breast J. 2019;25(2):250–6.

    Article  PubMed  Google Scholar 

  55. Patel BK, Lobbes MBI, Lewin J. Contrast enhanced spectral mammography: a review. Semin Ultrasound CT MR. 2018;39(1):70–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.S. and N.B. wrote the main manuscript text and prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Harnoor Singh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Bhakta, N. Minimally Invasive Breast Cancer: How to Find Early Breast Cancers. Curr Breast Cancer Rep 16, 117–125 (2024). https://doi.org/10.1007/s12609-023-00518-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-023-00518-x

Keywords

Navigation