Skip to main content

Advertisement

Log in

L-Alanine promotes anti-infectious properties of Bacillus subtilis S-2 spores via the germination receptor gerAA

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Bacillus species, which have two cell-type forms (vegetative cells and spores), demonstrate a variety of probiotic functions in animal feed additives and human nutrition. We previously found that the probiotic effect of Bacillus subtilis S-2 spores with high germination response to L-alanine was specifically enhanced by the L-alanine pretreatment. The germination response of Bacillus is highly associated with the germination receptors of spores. However, how L-alanine-induced germination of spores exerts anti-infectious effect in epithelial cells remains unclear. In this study, we constructed the mutant strain of B. subtilis S-2 with germination receptor gerAA knockout to further explore the role of spore germination in resisting pathogen infection to cells. The differential probiotic effects of B. subtilis S-2 and S-2ΔgerAA spores pretreated with L-alanine were evaluated in intestinal porcine epithelial cells (IPEC-J2) or Caco2 cells infected with enterotoxigenic Escherichia coli (ETEC) or following IL-1β stimulation. The results showed that the germination response of the S-2ΔgerAA spores to L-alanine was significantly reduced. Compared with the S-2ΔgerAA spores, the L-alanine-induced germination of B. subtilis S-2 spores significantly increased the activity of anti-adhesion of ETEC to IPEC-J2 cells and reduced the expression of inflammatory factors and cell receptors. L-alanine induction also significantly promoted the expression of autophagy-related proteins in the B. subtilis S-2 spores. These findings demonstrate that the gerAA germination receptor is essential for the probiotic function of Bacillus spores and that L-alanine treatment promotes the anti-infectious properties of the germinated spores in porcine intestinal epithelial IPEC-J2 cells. The result suggests the importance of germination receptor gerAA in helping spore germination and enhancing anti-infectious activity. The findings in the study benefit to screening of potential Bacillus probiotics and increasing probiotic efficacy induced by L-alanine as an adjuvant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Li C, Cai H, Li S, Liu G, Deng X, Bryden WL, Zheng A (2022) Comparing the potential of Bacillus amyloliquefaciens CGMCC18230 with antimicrobial growth promoters for growth performance, bone development, expression of phosphorus transporters, and excreta microbiome in broiler chickens. Poult Sci 101(11):102126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220

    Article  PubMed  Google Scholar 

  3. Lu S, Na K, Li Y, Zhang L, Fang Y, Guo X (2022) Bacillus-derived probiotics: metabolites and mechanisms involved in bacteria-host interactions. Crit Rev Food Sci Nutr 1–14

  4. Leser TD, Knarreborg A, Worm J (2008) Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J Appl Microbiol 104(4):1025–1033

    Article  CAS  PubMed  Google Scholar 

  5. Piewngam P, Chiou J, Ling J, Liu R, Pupa P, Zheng Y, Otto M (2021) Enterococcal bacteremia in mice is prevented by oral administration of probiotic Bacillus spores. Sci Transl Med 13(621):eabf4692

  6. De Oliveira MJK, Sakomura NK, de Paula Dorigam JC, Doranalli K, Soares L, da Silva Viana G (2019) Bacillus amyloliquefaciens CECT 5940 alone or in combination with antibiotic growth promoters improves performance in broilers under enteric pathogen challenge. Poult Sci 98(10):4391–4400

    Article  PubMed  PubMed Central  Google Scholar 

  7. Du R, Jiao S, Dai Y, An J, Lv J, Yan X, Wang J, Han B (2018) Probiotic Bacillus amyloliquefaciens C-1 improves growth performance, stimulates GH/IGF-1, and regulates the gut microbiota of growth-retarded beef calves. Front Microbiol 9(2006):02006

    Article  Google Scholar 

  8. Du W, Xu H, Mei X, Cao X, Gong L, Wu Y, Li Y, Yu D, Liu S, Wang Y (2018) Probiotic Bacillus enhance the intestinal epithelial cell barrier and immune function of piglets. Benef microbes 9(5):743–754

    Article  CAS  PubMed  Google Scholar 

  9. Neag MA, Catinean A, Muntean DM, Pop MR, Bocsan CI, Botan EC, Buzoianu AD (2020) Probiotic Bacillus spores protect against acetaminophen induced acute liver injury in rats. Nutrients 12(3):632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li L, Liu B, Cao J, Zhang H, Tian F, Yu L, Chen W, Zhai Q (2022) Different effects of Bacillus coagulans vegetative cells and spore isolates on constipation-induced gut microbiota dysbiosis in mice. Food Funct 13(18):9645–9657

    Article  CAS  PubMed  Google Scholar 

  11. Lu S, Liao X, Zhang L, Fang Y, Xiang M, Guo X (2021) Nutrient L-alanine-induced germination of Bacillus improves proliferation of spores and exerts probiotic effects in vitro and in vivo. Front Microbiol 12:796158

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bernardeau M, Lehtinen MJ, Forssten SD, Nurminen P (2017) Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J Food Sci Technol 54(8):2570–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Casula G, Cutting SM (2002) Bacillus probiotics: spore germination in the gastrointestinal tract. Appl Environ Microbiol 68(5):2344–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cartman ST, La Ragione RM, Woodward MJ (2008) Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Appl Environ Microbiol 74(16):5254–5258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berthold-Pluta A, Pluta A, Garbowska M (2015) The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract. Microb Pathog 82:7–14

    Article  CAS  PubMed  Google Scholar 

  16. Christie G, Setlow P (2020) Bacillus spore germination: Knowns, unknowns and what we need to learn. Cell Signal 74:109729

    Article  CAS  PubMed  Google Scholar 

  17. Hudson KD, Corfe BM, Kemp EH, Feavers IM, Coote PJ, Moir A (2001) Localization of GerAA and GerAC germination proteins in the Bacillus subtilis spore. J Bacteriol 183(14):4317–4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paidhungat M, Setlow P (2001) Localization of a germinant receptor protein (GerBA) to the inner membrane of Bacillus subtilis spores. J Bacteriol 183(13):3982–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mongkolthanaruk W, Cooper GR, Mawer JS, Allan RN, Moir A (2011) Effect of amino acid substitutions in the GerAA protein on the function of the alanine-responsive germinant receptor of Bacillus subtilis spores. J Bacteriol 193(9):2268–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cooper GR, Moir A (2011) Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168. J Bacteriol 193(9):2261–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Madslien EH, Granum PE, Blatny JM, Lindbäck T (2014) L-alanine-induced germination in Bacillus licheniformis -the impact of native gerA sequences. BMC Microbiol 14(1):101

    Article  PubMed  PubMed Central  Google Scholar 

  22. Paidhungat M, Setlow P (2000) Role of ger proteins in nutrient and nonnutrient triggering of spore germination in Bacillus subtilis. J Bacteriol 182(9):2513–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alzahrani OM, Moir A (2014) Spore germination and germinant receptor genes in wild strains of Bacillus subtilis. J Appl Microbiol 117(3):741–749

    Article  CAS  PubMed  Google Scholar 

  24. Amon JD, Artzi L, Rudner DZ (2022) Genetic evidence for signal transduction within the Bacillus subtilis GerA germinant receptor. J Bacteriol 204(2):e0047021

    Article  PubMed  Google Scholar 

  25. Ramirez-Guadiana FH, Meeske AJ, Wang X, Rodrigues CDA, Rudner DZ (2017) The Bacillus subtilis germinant receptor GerA triggers premature germination in response to morphological defects during sporulation. Mol Microbiol 105(5):689–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu S, Tao T, Su Y, Hu J, Zhang L, Wang G, Li X, Guo X (2022) Whole genome sequencing and CRISPR/Cas9 gene editing of enterotoxigenic Escherichia coli BE311 for fluorescence labeling and enterotoxin analyses. Int J Mol Sci 23(14)

  27. Rhayat L, Maresca M, Nicoletti C, Perrier J, Brinch KS, Christian S, Devillard E, Eckhardt E (2019) Effect of Bacillus subtilis strains on intestinal barrier function and inflammatory response. Front immunol 10:564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Çaykara B, Öztürk G, Alsaadoni H, Ötünçtemur A, Pençe S (2020) Evaluation of microRNA-124 expression in renal cell carcinoma. Balkan J Med Genet 23(2):73–78

    Article  PubMed  Google Scholar 

  29. Damgaard MV, Treebak JT (2022) Protocol for qPCR analysis that corrects for cDNA amplification efficiency. STAR Protoc 3(3):101515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lovdal IS, From C, Madslien EH, Romundset KC, Klufterud E, Rosnes JT, Granum PE (2012) Role of the gerA operon in L-alanine germination of Bacillus licheniformis spores. BMC Microbiol 12:34

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ramirez-Peralta A, Zhang P, Li YQ, Setlow P (2012) Effects of sporulation conditions on the germination and germination protein levels of Bacillus subtilis spores. Appl Environ Microbiol 78(8):2689–2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sayer CV, Barat B, Popham DL (2019) Identification of L-Valine-initiated-germination-active genes in Bacillus subtilis using Tn-seq. PLoS ONE 14(6):e0218220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramirez-Peralta A, Stewart KA, Thomas SK, Setlow B, Chen Z, Li YQ, Setlow P (2012) Effects of the SpoVT regulatory protein on the germination and germination protein levels of spores of Bacillus subtilis. J Bacteriol 194(13):3417–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Fitz-James PC, Aronson AI (1993) Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J Bacteriol 175(12):3757–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zou XY, Zhang M, Tu WJ, Zhang Q, Jin ML, Fang RD, Jiang S (2022) Bacillus subtilis inhibits intestinal inflammation and oxidative stress by regulating gut flora and related metabolites in laying hens. Animal 16(3):100474

    Article  CAS  PubMed  Google Scholar 

  36. Docando F, Nuñez-Ortiz N, Serra CR, Arense P, Enes P, Oliva-Teles A, Díaz-Rosales P, Tafalla C (2022) Mucosal and systemic immune effects of Bacillus subtilis in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 124:142–155

    Article  CAS  PubMed  Google Scholar 

  37. Tao X, He J, Lu J, Chen Z, Jin M, Jiao L, Masagounder K, Liu W, Zhou Q (2022) Effects of Bacillus subtilis DSM 32315 (Gutcare®) on the growth performance, antioxidant status, immune ability and intestinal function for juvenile Litopenaeus vannamei fed with high/low-fishmeal diets. Aquacult Rep 26(101282

  38. Li Q, Li L, Chen Y, Yu C, Azevedo P, Gong J, Yang C (2022) Bacillus licheniformis PF9 improves barrier function and alleviates inflammatory responses against enterotoxigenic Escherichia coli F4 infection in the porcine intestinal epithelial cells. J Anim Sci Biotechnol 13(1):86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsugukuni T, Shigemune N, Nakayama M, Miyamoto T (2020) Morphological changes in spores during germination in Bacillus cereus and Bacillus subtilis. Biocontrol Sci 25(4):203–213

    Article  PubMed  Google Scholar 

  40. Lalloo R, Moonsamy G, Ramchuran S, Görgens J, Gardiner N (2010) Competitive exclusion as a mode of action of a novel Bacillus cereus aquaculture biological agent. Lett Appl Microbiol 50(6):563–570

    Article  CAS  PubMed  Google Scholar 

  41. La Ragione RM, Woodward MJ (2003) Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype enteritidis and Clostridium perfringens in young chickens. Vet Microbiol 94(3):245–256

    Article  PubMed  Google Scholar 

  42. Tan S, Gu Y, Yang C, Dong Y, Mei X, Shen Q, Xu Y (2016) Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biol Fert Soils 52(3):341–351

    Article  CAS  Google Scholar 

  43. Ye X, Li P, Yu Q, Yang Q (2013) Bacillus subtilis inhibition of enterotoxic Escherichia coli-induced activation of MAPK signaling pathways in Caco-2 cells. Ann Microbiol 63(2):577–581

    Article  CAS  Google Scholar 

  44. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820

    Article  CAS  PubMed  Google Scholar 

  45. Liu C, Liu Y, Wang C, Guo Y, Cheng Y, Qian H, Zhao Y (2022) Lycopene-loaded bilosomes ameliorate high-fat diet-induced chronic nephritis in mice through the TLR4/MyD88 inflammatory pathway. Foods 11(19)

  46. Muduli C, Paria A, Srivastava R, Rathore G, Lal KK (2021) Aeromonas hydrophila infection induces Toll-like receptor 2 (tlr2) and associated downstream signaling in Indian catfish, Clarias magur (Hamilton, 1822). PeerJ 9:e12411

    Article  PubMed  PubMed Central  Google Scholar 

  47. Qiao J, Sun Z, Liang D, Li H (2020) Lactobacillus salivarius alleviates inflammation via NF-κB signaling in ETEC K88-induced IPEC-J2 cells. J Anim Sci Biotechnol 11(76

  48. Wu Y, Wang Y, Zou H, Wang B, Sun Q, Fu A, Wang Y, Wang Y, Xu X, Li W (2017) Probiotic Bacillus amyloliquefaciens SC06 induces autophagy to protect against pathogens in macrophages. Front Microbiol 8:469

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wu Y, Wang B, Xu H, Tang L, Li Y, Gong L, Wang Y, Li W (2019) Probiotic Bacillus attenuates oxidative stress- induced intestinal injury via p38-mediated autophagy. Front Microbiol 10:2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang L, Zeng Z, Zhou Y, Wang B, Zou P, Wang Q, Ying J, Wang F, Li X, Xu S, Zhao P, Li W (2021) Bacillus amyloliquefaciens SC06 induced AKT-FOXO signaling pathway-mediated autophagy to alleviate oxidative stress in IPEC-J2 cells. Antioxidants (Basel) 10(10)

  51. Matsuzawa Y, Oshima S, Nibe Y, Kobayashi M, Maeyashiki C, Nemoto Y, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T (2015) RIPK3 regulates p62–LC3 complex formation via the caspase-8-dependent cleavage of p62. Biochem bioph res co 456(1):298–304

    Article  CAS  Google Scholar 

  52. Wani A, Gupta M, Ahmad M, Shah AM, Ahsan AU, Qazi PH, Malik F, Singh G, Sharma PR, Kaddoumi A, Bharate SB, Vishwakarma RA, Kumar A (2019) Alborixin clears amyloid-β by inducing autophagy through PTEN-mediated inhibition of the AKT pathway. Autophagy 15(10):1810–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu W, Xu L, Wang X, Zhang D, Sun G, Wang M, Wang M, Han Y, Chai R, Wang H (2021) PRDX1 activates autophagy via the PTEN-AKT signaling pathway to protect against cisplatin-induced spiral ganglion neuron damage. Autophagy 17(12):4159–4181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF (2016) p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 21:29

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (No. 32072767 and 31672455), the Fundamental Research Funds for the Central Universities, South-Central Minzu University (Grant Number: CZY21001, CZP22003), and University-Enterprise R&D Cooperation Projects (HZY21089 and HZY23010).

Author information

Authors and Affiliations

Authors

Contributions

XG designed the experiments. SL, XL, WL, and KN performed the experiments. SL, LZ, and XL analyzed the experimental data. SL and XG wrote this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaohua Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Liao, X., Lu, W. et al. L-Alanine promotes anti-infectious properties of Bacillus subtilis S-2 spores via the germination receptor gerAA. Probiotics & Antimicro. Prot. (2023). https://doi.org/10.1007/s12602-023-10121-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-023-10121-2

Keywords

Navigation