Skip to main content
Log in

Comprehensive analysis of microRNAs modulated by histone deacetylase inhibitors identifies microRNA-7-5p with anti-myeloma effect

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Basic research to expand treatment options for multiple myeloma is greatly needed due to the refractory nature of the disease. Histone deacetylase (HDAC) inhibitors, which are epigenetic regulators, are attractive but have limited applications. MicroRNAs (miRNAs), which are also epigenetic regulators, are important molecules that may lead to future therapeutic breakthroughs. In this study, we comprehensively searched for miRNAs that are altered by HDAC inhibitors in myeloma cells. We identified miR-7-5p (miR-7) as a miRNA downregulated by HDAC inhibitors. Transfection of myeloma cell lines with miR-7 suppressed cell proliferation, induced apoptosis, and enhanced the effects of the HDAC inhibitor panobinostat. Expression of miR-7 was downregulated by c-Myc inhibition, but upregulated by bortezomib. Comprehensive examination of miR-7 targets revealed four candidates: SLC6A9, LRRC59, EXOSC2, and PSME3. Among these, we focused on PSME3, an oncogene involved in proteasome capacity in myeloma cells. PSME3 knockdown increases myeloma cell death and panobinostat sensitivity. In conclusion, miR-7, which is downregulated by HDAC inhibitors, is a tumor suppressor that targets PSME3. This miR-7 downregulation may be involved in HDAC inhibitor resistance. In addition, combinations of anti-myeloma drugs that complement changes in miRNA expression should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. van de Donk NWCJ, Pawlyn C, Yong KL. Multiple myeloma. Lancet. 2021;397:410–27.

    Article  PubMed  Google Scholar 

  2. Hanamura I. Multiple myeloma with high-risk cytogenetics and its treatment approach. Int J Hematol. 2022;115:762–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolffe AP. Histone deacetylase: a regulator of transcription. Science. 1996;272:371–2.

    Article  CAS  PubMed  Google Scholar 

  4. Smith EM, Boyd K, Davies FE. The potential role of epigenetic therapy in multiple myeloma. Br J Haematol. 2010;148:702–13.

    Article  CAS  PubMed  Google Scholar 

  5. Berdeja JG, Laubach JP, Richter J, et al. Panobinostat from bench to bedside: rethinking the treatment paradigm for multiple myeloma. Clin Lymphoma Myeloma Leuk. 2021;21:752–65.

    Article  CAS  PubMed  Google Scholar 

  6. Harada T, Hideshima T, Anderson KC. Histone deacetylase inhibitors in multiple myeloma: from bench to bedside. Int J Hematol. 2016;104:300–9.

    Article  CAS  PubMed  Google Scholar 

  7. Ohguchi H, Hideshima T, Anderson KC. The biological significance of histone modifiers in multiple myeloma: clinical applications. Blood Cancer J. 2018;8:83.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Imai Y, Hirano M, Kobayashi M, Futami M, Tojo A. HDAC inhibitors exert anti-myeloma effects through multiple modes of action. Cancers (Basel). 2019;11:475.

    Article  CAS  PubMed  Google Scholar 

  9. San-Miguel JF, Richardson PG, Günther A, et al. Phase Ib study of panobinostat and bortezomib in relapsed or relapsed and refractory multiple myeloma. J Clin Oncol. 2013;31:3696–703.

    Article  CAS  PubMed  Google Scholar 

  10. Richardson PG, Schlossman RL, Alsina M, et al. PANORAMA 2: panobinostat in combination with bortezomib and dexamethasone in patients with relapsed and bortezomib-refractory myeloma. Blood. 2013;122:2331–7.

    Article  CAS  PubMed  Google Scholar 

  11. San-Miguel JF, Hungria VT, Yoon SS, et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol. 2014;15:1195–206.

    Article  CAS  PubMed  Google Scholar 

  12. Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Whittaker SJ, Demierre MF, Kim EJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485–91.

    Article  CAS  PubMed  Google Scholar 

  14. Utsunomiya A, Izutsu K, Jo T, Yoshida S, et al. Oral histone deacetylase inhibitor tucidinostat (HBI-8000) in patients with relapsed or refractory adult T-cell leukemia/lymphoma: phase IIb results. Cancer Sci. 2022;113:2778–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rai S, Kim WS, Ando K, et al. Oral HDAC inhibitor tucidinostat in patients with relapsed or refractory peripheral T-cell lymphoma: phase IIb results. Haematologica. 2023;108:811–21.

    Article  CAS  PubMed  Google Scholar 

  16. Abe F, Kitadate A, Ikeda S, et al. Histone deacetylase inhibitors inhibit metastasis by restoring a tumor suppressive microRNA-150 in advanced cutaneous T-cell lymphoma. Oncotarget. 2017;8:7572–85.

    Article  PubMed  Google Scholar 

  17. Bartel DP. Metazoan MicroRNAs. Cell. 2018;173:20–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–22.

    Article  CAS  PubMed  Google Scholar 

  19. Amodio N, Stamato MA, Gullà AM, et al. Therapeutic targeting of miR-29b/HDAC4 epigenetic loop in multiple myeloma. Mol Cancer Ther. 2016;15:1364–75.

    Article  CAS  PubMed  Google Scholar 

  20. Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA. 2008;105:12885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chi J, Ballabio E, Chen XH, et al. MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival. Biol Direct. 2011;6:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang TC, Yu D, Lee YS, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40:43–50.

    Article  CAS  PubMed  Google Scholar 

  23. Chou YT, Lin HH, Lien YC, et al. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res. 2010;70:8822–31.

    Article  CAS  PubMed  Google Scholar 

  24. Yu Z, Wei X, Liu L, et al. Indirubin-3’-monoxime acts as proteasome inhibitor: therapeutic application in multiple myeloma. EBioMedicine. 2022;78: 103950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanchez N, Gallagher M, Lao N, et al. MiR-7 triggers cell cycle arrest at the G1/S transition by targeting multiple genes including Skp2 and Psme3. PLoS One. 2013;8: e65671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiong S, Zheng Y, Jiang P, et al. PA28gamma emerges as a novel functional target of tumour suppressor microRNA-7 in non-small-cell lung cancer. Br J Cancer. 2014;110:353–62.

    Article  CAS  PubMed  Google Scholar 

  27. Tang S, Ma D, Cheng B, et al. Crucial role of HO-1/IRF4-dependent apoptosis induced by panobinostat and lenalidomide in multiple myeloma. Exp Cell Res. 2018;363:196–207.

    Article  CAS  PubMed  Google Scholar 

  28. Abe K, Ikeda S, Nara M, et al. Hypoxia-induced oxidative stress promotes therapy resistance via upregulation of heme oxygenase-1 in multiple myeloma. Cancer Med. 2023;12:9709–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Handa H, Murakami Y, Ishihara R, Kimura-Masuda K, Masuda Y. The role and function of microRNA in the pathogenesis of multiple myeloma. Cancers (Basel). 2019;11:1738.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao J, Tao Y, Zhou Y, et al. MicroRNA-7: a promising new target in cancer therapy. Cancer Cell Int. 2015;15:103.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Okuda H, Xing F, Pandey PR, et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res. 2013;73:1434–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suto T, Yokobori T, Yajima R, et al. MicroRNA-7 expression in colorectal cancer is associated with poor prognosis and regulates cetuximab sensitivity via EGFR regulation. Carcinogenesis. 2015;36:338–45.

    Article  CAS  PubMed  Google Scholar 

  33. Ikeda S, Kitadate A, Abe F, et al. Hypoxia-inducible microRNA-210 regulates the DIMT1-IRF4 oncogenic axis in multiple myeloma. Cancer Sci. 2017;108:641–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wong WJ, Qiu B, Nakazawa MS, Qing G, Simon MC. MYC degradation under low O2 tension promotes survival by evading hypoxia-induced cell death. Mol Cell Biol. 2013;33:3494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dang CV, O’donnell KA, Juopperi T. The great MYC escape in tumorigenesis. Cancer Cell. 2005;8:177–8.

    Article  CAS  PubMed  Google Scholar 

  36. Hoffman B, Liebermann DA. Apoptotic signaling by c-MYC. Oncogene. 2008;27:6462–72.

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt S, et al. A MYC-GCN2-eIF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nat Cell Biol. 2019;21:1413–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu S, Zang H, Zheng H, et al. miR-4634 augments the anti-tumor effects of RAD001 and associates well with clinical prognosis of non-small cell lung cancer. Sci Rep. 2020;10:13079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu S, Wang W, Ning Y, et al. Exosome-mediated miR-7-5p delivery enhances the anticancer effect of Everolimus via blocking MNK/eIF4E axis in non-small cell lung cancer. Cell Death Dis. 2022;13:129.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maruhashi T, Miki H, Sogabe K, et al. Acute suppression of translation by hyperthermia enhances anti-myeloma activity of carfilzomib. Int J Hematol. 2024;119:291–302.

    Article  CAS  PubMed  Google Scholar 

  41. Sogabe K, Nakamura S, Higa Y, et al. Acute accumulation of PIM2 and NRF2 and recovery of β5 subunit activity mitigate multiple myeloma cell susceptibility to proteasome inhibitors. Int J Hematol. 2024;119:303–15.

    Article  CAS  PubMed  Google Scholar 

  42. Guo J, Hao J, Jiang H, et al. Proteasome activator subunit 3 promotes pancreatic cancer growth via c-Myc-glycolysis signaling axis. Cancer Lett. 2017;386:161–7.

    Article  CAS  PubMed  Google Scholar 

  43. Boulpicante M, Darrigrand R, Pierson A, et al. Tumors escape immunosurveillance by overexpressing the proteasome activator PSME3. Oncoimmunology. 2020;9:1761205.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yi Z, Yang D, Liao X, et al. PSME3 induces epithelial-mesenchymal transition with inducing the expression of CSC markers and immunosuppression in breast cancer. Exp Cell Res. 2017;358:87–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Yukiko Abe, Yuko Chiba, and Hiromi Kataho for technical assistance. The authors also thank Honyaku Center Inc. for English language editing. This study was supported by JSPS KAKENHI (Grant number: 17K16179).

Author information

Authors and Affiliations

Authors

Contributions

Masahiro Yamada, Sho Ikeda, Wataru Kuroki, Sayaka Iwama, Yuto Takahashi, and Akihiro Kitadate performed experiments and analyzed data. Sho Ikeda and Masahiro Yamada drafted the manuscript. Sho Ikeda and Hiroyuki Tagawa designed this study. Naoto Takahashi supervised the research.

Corresponding author

Correspondence to Sho Ikeda.

Ethics declarations

Conflict of interest

Sho Ikeda: Honoraria, Janssen Pharma, Akihiro Kitadate: Honoraria, Janssen Pharma and Sanofi, Naoto Takahashi: Honoraria, Novartis Pharma; Research funding, Takeda Pharmaceutical Company, Kyowa Hakko Kirin, and Novartis Pharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 453 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, M., Ikeda, S., Kuroki, W. et al. Comprehensive analysis of microRNAs modulated by histone deacetylase inhibitors identifies microRNA-7-5p with anti-myeloma effect. Int J Hematol (2024). https://doi.org/10.1007/s12185-024-03812-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12185-024-03812-1

Keywords

Navigation