Skip to main content
Log in

Exosomal microRNAs: impact on cancer detection, treatment, and monitoring

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Exosomes, measuring between 30 and 150 nm in diameter, are small vesicles enclosed by a lipid bilayer membrane. They are released by various cells in the body and carry a diverse payload of molecules, including proteins, lipids, mRNA, and different RNA species such as long non-coding RNA, circular RNA, and microRNA (miRNA). With lengths of approximately 19–22 nucleotides, miRNAs constitute the predominant cargo in exosomes and serve as crucial regulators of protein biosynthesis. In cancer detection, exosomal miRNAs show promise as non-invasive biomarkers due to their stability and presence in various bodily fluids, aiding in early detection and precise diagnosis with specific miRNA signatures linked to different cancer types. Moreover, exosomal miRNAs influence treatment outcomes by affecting cellular processes like cell growth, cell death, and drug resistance, thereby impacting response to therapy. Additionally, they serve as indicators of disease progression and treatment response, providing insights that can guide treatment decisions and improve patient care. Through longitudinal studies, changes in exosomal miRNA profiles have been observed to correlate with disease progression, metastasis, and response to therapy, highlighting their potential for real-time monitoring of tumor dynamics and treatment efficacy. Understanding the intricate roles of exosomal miRNAs in cancer biology offers opportunities for developing innovative diagnostic tools and therapeutic strategies tailored to individual patients, ultimately advancing precision medicine approaches and improving outcomes for cancer patients. This review aims to provide an understanding of the role of exosomal miRNAs in cancer detection, treatment, and monitoring, shedding light on their potential for revolutionising oncology practices and patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No data is used for the manuscript.

References

  1. Edgar JR. Q&A: What are exosomes, exactly? BMC Biol. 2016;14:46.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mehdipour M, Shahidi M, Anbari F, Mirzaei H, Jafari S, Kholghi A, et al. Salivary level of microRNA-146a and microRNA-155 biomarkers in patients with oral lichen planus versus oral squamous cell carcinoma. BMC Oral Health. 2023;23:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie S, Zhang Q, Jiang L. Current knowledge on exosome biogenesis, cargo-sorting mechanism and therapeutic implications. Membranes. 2022;12:498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018. https://doi.org/10.3389/fendo.2018.00402.

    Article  Google Scholar 

  5. Salehi M, Kamali MJ, Arab D, Safaeian N, Ashuori Z, Maddahi M, et al. Exosomal microRNAs in regulation of tumor cells resistance to apoptosis. Biochem Biophys Rep. 2024;37:101644.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Piwocka O, Piotrowski I, Suchorska WM, Kulcenty K. Dynamic interactions in the tumor niche: how the cross-talk between CAFs and the tumor microenvironment impacts resistance to therapy. Front Mol Biosci. 2024. https://doi.org/10.3389/fmolb.2024.1343523.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem. 2016;74:103–41. https://doi.org/10.1016/bs.acc.2015.12.005

  8. Li C, Zhou T, Chen J, Li R, Chen H, Luo S, et al. The role of exosomal miRNAs in cancer. J Transl Med. 2022;20:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mowla M, Hashemi A. Functional roles of exosomal miRNAs in multi-drug resistance in cancer chemotherapeutics. Exp Mol Pathol. 2021;118:104592.

    Article  CAS  PubMed  Google Scholar 

  10. Nail HM, Chiu C-C, Leung C-H, Ahmed MMM, Wang H-MD. Exosomal miRNA-mediated intercellular communications and immunomodulatory effects in tumor microenvironments. J Biomed Sci. 2023;30:69.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Andre M, Caobi A, Miles JS, Vashist A, Ruiz MA, Raymond AD. Diagnostic potential of exosomal extracellular vesicles in oncology. BMC Cancer. 2024;24:322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol. 2011;23:452–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saric A, Freeman SA. Endomembrane tension and trafficking. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2020.611326.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schmidt O, Teis D. The ESCRT machinery. Curr Biol. 2012;22:R116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andreu Z, Yanez-Mo M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014. https://doi.org/10.3389/fimmu.2014.00442.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang W, Liu R, Chen Y, Wang M, Du J. Crosstalk between oxidative stress and exosomes. Oxid Med Cell Longev. 2022;2022:1–11.

    Article  Google Scholar 

  17. Yang B, Lin Y, Huang Y, Zhu N, Shen Y-Q. Extracellular vesicles modulate key signalling pathways in refractory wound healing. Burns Trauma. 2023. https://doi.org/10.1093/burnst/tkad039.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jung J-H, Back W, Yoon J, Han H, Kang K-W, Choi B, et al. Dual size-exclusion chromatography for efficient isolation of extracellular vesicles from bone marrow derived human plasma. Sci Rep. 2021;11:217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sonbhadra S, Mehak, Pandey LM. Biogenesis, isolation, and detection of exosomes and their potential in therapeutics and diagnostics. Biosensors. 2023;13:802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu F, Vermesh O, Mani V, Ge TJ, Madsen SJ, Sabour A, et al. The exosome total isolation chip. ACS Nano. 2017;11:10712–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mun B, Kim R, Jeong H, Kang B, Kim J, Son HY, et al. An immuno-magnetophoresis-based microfluidic chip to isolate and detect HER2-Positive cancer-derived exosomes via multiple separation. Biosens Bioelectron. 2023;239:115592.

    Article  CAS  PubMed  Google Scholar 

  22. Kwon Y, Park J. Methods to analyze extracellular vesicles at single particle level. Micro Nano Syst Lett. 2022;10:14.

    Article  Google Scholar 

  23. Li X-X, Yang L-X, Wang C, Li H, Shi D-S, Wang J. The roles of exosomal proteins: classification, function, and applications. Int J Mol Sci. 2023;24:3061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. MacFarlane L-A, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11:537–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:3011–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwarzenbach H, Gahan P. MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Noncoding RNA. 2019;5:28.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodriguez-dorantes M, Romero-Cordoba S, Peralta-Zaragoza O, Salido-Guadarrama I, Hidalgo-Miranda A. MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Onco Targets Ther. 2014. https://doi.org/10.2147/OTT.S61562.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Groot M, Lee H. Sorting mechanisms for microRNAs into extracellular vesicles and their associated diseases. Cells. 2020;9:1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiu Y, Li P, Zhang Z, Wu M. Insights Into exosomal non-coding RNAs sorting mechanism and clinical application. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.664904.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinform. 2015;13:17–24.

    Article  CAS  Google Scholar 

  31. Guduric-Fuchs J, O’Connor A, Camp B, O’Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics. 2012;13:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li B, Cao Y, Sun M, Feng H. Expression, regulation, and function of exosome-derived miRNAs in cancer progression and therapy. FASEB J. 2021. https://doi.org/10.1096/fj.202100294RR.

    Article  PubMed  Google Scholar 

  33. Santos P, Almeida F. Role of exosomal miRNAs and the tumor microenvironment in drug resistance. Cells. 2020;9:1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miaomiao S, Xiaoqian W, Yuwei S, Chao C, Chenbo Y, Yinghao L, et al. Cancer-associated fibroblast-derived exosome microRNA-21 promotes angiogenesis in multiple myeloma. Sci Rep. 2023;13:9671.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang X, Li Y, Zou L, Zhu Z. Role of exosomes in crosstalk between cancer-associated fibroblasts and cancer cells. Front Oncol. 2019. https://doi.org/10.3389/fonc.2019.00356.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang Z, Xing T, Chen Y, Xiao J. Exosome-mediated miR-200b promotes colorectal cancer proliferation upon TGF-β1 exposure. Biomed Pharmacother. 2018;106:1135–43.

    Article  CAS  PubMed  Google Scholar 

  37. Yan S, Liu G, Jin C, Wang Z, Duan Q, Xu J, et al. MicroRNA-6869-5p acts as a tumor suppressor via targeting TLR4/NF-κB signaling pathway in colorectal cancer. J Cell Physiol. 2018;233:6660–8.

    Article  CAS  PubMed  Google Scholar 

  38. Tang J, Li Y, Liu K, Zhu Q, Yang W-H, Xiong L-K, et al. Exosomal miR-9-3p suppresses HBGF-5 expression and is a functional biomarker in hepatocellular carcinoma. Minerva Med. 2017. https://doi.org/10.23736/S0026-4806.17.05167-9.

    Article  PubMed  Google Scholar 

  39. Li XJ, Ren ZJ, Tang JH, Yu Q. Exosomal microRNA MiR-1246 promotes cell proliferation, invasion and drug resistance by targeting CCNG2 in breast cancer. Cell Physiol Biochem. 2017;44:1741–8.

    Article  CAS  PubMed  Google Scholar 

  40. Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X, et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun. 2017;8:14448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eichelser C, Stückrath I, Müller V, Milde-Langosch K, Wikman H, Pantel K, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 2014;5:9650–63.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tian W, Lei N, Zhou J, Chen M, Guo R, Qin B, et al. Extracellular vesicles in ovarian cancer chemoresistance, metastasis, and immune evasion. Cell Death Dis. 2022;13:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang M, Yu F, Ding H, Wang Y, Li P, Wang K. Emerging function and clinical values of exosomal microRNAs in cancer. Mol Ther Nucleic Acids. 2019;16:791–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020;13:100773.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ma Y, Yu Y, Yin Y, Wang L, Yang H, Luo S, et al. Potential role of epithelial–mesenchymal transition induced by periodontal pathogens in oral cancer. J Cell Mol Med. 2024. https://doi.org/10.1111/jcmm.18064.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bhagirath D, Yang TL, Bucay N, Sekhon K, Majid S, Shahryari V, et al. microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 2018;78:1833–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fang J, Zhang Z, Shang L, Luo Y, Lin Y, Yuan Y, et al. Hepatoma cell-secreted exosomal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology. 2018;68:1459–75.

    Article  CAS  PubMed  Google Scholar 

  48. Jung KO, Youn H, Lee C-H, Kang KW, Chung J-K. Visualization of exosome-mediated miR-210 transfer from hypoxic tumor cells. Oncotarget. 2017;8:9899–910.

    Article  PubMed  Google Scholar 

  49. Wang L, He J, Hu H, Tu L, Sun Z, Liu Y, et al. Lung CSC-derived exosomal miR-210-3p contributes to a pro-metastatic phenotype in lung cancer by targeting FGFRL1. J Cell Mol Med. 2020;24:6324–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sruthi TV, Edatt L, Raji GR, Kunhiraman H, Shankar SS, Shankar V, et al. Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis. J Cell Physiol. 2018;233:3498–514.

    Article  CAS  PubMed  Google Scholar 

  51. Qi R, Zhao Y, Guo Q, Mi X, Cheng M, Hou W, et al. Exosomes in the lung cancer microenvironment: biological functions and potential use as clinical biomarkers. Cancer Cell Int. 2021;21:333.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Challagundla KB, Wise PM, Neviani P, Chava H, Murtadha M, Xu T, et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. JNCI J Natl Cancer Inst. 2015. https://doi.org/10.1093/jnci/djv135.

    Article  PubMed  Google Scholar 

  53. Ouyang YX, Feng J, Wang Z, Zhang GJ, Chen M. miR-221/222 sponge abrogates tamoxifen resistance in ER-positive breast cancer cells through restoring the expression of ERα. Mol Biomed. 2021;2:20.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen W-X, Wang D-D, Zhu B, Zhu Y-Z, Zheng L, Feng Z-Q, et al. Exosomal miR-222 from adriamycin-resistant MCF-7 breast cancer cells promote macrophages M2 polarization via PTEN/Akt to induce tumor progression. Aging. 2021;13:10415–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Santos JC, da Lima NS, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM. Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep. 2018;8:829.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang B, Zhang Y, Ye M, Wu J, Ma L, Chen H. Cisplatin-resistant MDA-MB-231 cell-derived exosomes increase the resistance of recipient cells in an exosomal miR-423-5p-dependent manner. Curr Drug Metab. 2019;20:804–14.

    Article  CAS  PubMed  Google Scholar 

  57. Wang X, Zhang H, Yang H, Bai M, Ning T, Deng T, et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 2020;14:539–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Khorrami S, Zavaran Hosseini A, Mowla SJ, Soleimani M, Rakhshani N, Malekzadeh R. MicroRNA-146a induces immune suppression and drug-resistant colorectal cancer cells. Tumor Biol. 2017;39:101042831769836.

    Article  Google Scholar 

  59. Jung E, Choi J, Kim J-S, Han T-S. MicroRNA-based therapeutics for drug-resistant colorectal cancer. Pharmaceuticals. 2021;14:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang L, Zhang Y, Guo L, Liu C, Wang P, Ren W. Exosomal microRNA-107 reverses chemotherapeutic drug resistance of gastric cancer cells through HMGA2/mTOR/P-gp pathway. BMC Cancer. 2021;21:1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nguyen HT, Kacimi SEO, Nguyen TL, Suman KH, Lemus-Martin R, Saleem H, et al. MiR-21 in the cancers of the digestive system and its potential role as a diagnostic, predictive, and therapeutic biomarker. Biology. 2021;10:417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang M, Qiu R, Yu S, Xu X, Li G, Gu R, et al. Paclitaxel-resistant gastric cancer MGC-803 cells promote epithelial-to-mesenchymal transition and chemoresistance in paclitaxel-sensitive cells via exosomal delivery of miR-155–5p. Int J Oncol. 2018. https://doi.org/10.3892/ijo.2018.4601.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yang Z, Zhao N, Cui J, Wu H, Xiong J, Peng T. Exosomes derived from cancer stem cells of gemcitabine-resistant pancreatic cancer cells enhance drug resistance by delivering miR-210. Cell Oncol. 2020;43:123–36.

    Article  CAS  Google Scholar 

  64. Patel GK, Khan MA, Bhardwaj A, Srivastava SK, Zubair H, Patton MC, et al. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme. DCK Br J Cancer. 2017;116:609–19.

    Article  CAS  PubMed  Google Scholar 

  65. Fang Y, Zhou W, Rong Y, Kuang T, Xu X, Wu W, et al. Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer. Exp Cell Res. 2019;383:111543.

    Article  CAS  PubMed  Google Scholar 

  66. Qin X, Guo H, Wang X, Zhu X, Yan M, Wang X, et al. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol. 2019;20:12.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Qin X, Yu S, Zhou L, Shi M, Hu Y, Xu X, et al. Cisplatin-resistant lung cancer cell–derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100–5p-dependent manner. Int J Nanomed. 2017;12:3721–33.

    Article  CAS  Google Scholar 

  68. Au Yeung CL, Co N-N, Tsuruga T, Yeung T-L, Kwan S-Y, Leung CS, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7:11150.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology. 2018;67:940–54.

    Article  CAS  PubMed  Google Scholar 

  70. Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21:185–91.

    Article  CAS  PubMed  Google Scholar 

  71. Jin Y, Sun L, Chen Y, Lu Y. The homologous tumor-derived-exosomes loaded with miR -1270 selectively enhanced the suppression effect for colorectal cancer cells. Cancer Med. 2024. https://doi.org/10.1002/cam4.6936.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhou W, Xu M, Wang Z, Yang M. Engineered exosomes loaded with miR-449a selectively inhibit the growth of homologous non-small cell lung cancer. Cancer Cell Int. 2021;21:485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yan L-X, Huang X-F, Shao Q, Huang M-Y, Deng L, Wu Q-L, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14:2348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou Y, Wang G, Cai J, Du Y, Li H, Duan L, et al. Exosomal transfer of miR-195-5p restrains lung adenocarcinoma progression. Exp Cell Res. 2023;424:113485.

    Article  CAS  PubMed  Google Scholar 

  75. Li N, Cui T, Guo W, Wang D, Mao L. <p>MiR-155-5p accelerates the metastasis of cervical cancer cell via targeting TP53INP1</p>. Onco Targets Ther. 2019;12:3181–96.

    Article  PubMed  PubMed Central  Google Scholar 

  76. You X, Wang Y, Meng J, Han S, Liu L, Sun Y, et al. Exosomal miR-663b exposed to TGF-β1 promotes cervical cancer metastasis and epithelial-mesenchymal transition by targeting MGAT3. Oncol Rep. 2021;45:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Corcoran C, Rani S, O’Driscoll L. miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate. 2014;74:1320–34.

    Article  CAS  PubMed  Google Scholar 

  78. Al-Gazally ME, Khan R, Imran M, Ramírez-Coronel AA, Alshahrani SH, Altalbawy FMA, et al. The role and mechanism of action of microRNA-122 in cancer: focusing on the liver. Int Immunopharmacol. 2023;123:110713.

    Article  CAS  PubMed  Google Scholar 

  79. Wang L, Yang L, Zhuang T, Shi X. Tumor-derived exosomal miR-29b reduces angiogenesis in pancreatic cancer by silencing ROBO1 and SRGAP2. J Immunol Res. 2022;2022:1–12.

    Google Scholar 

  80. Yan T, Wang X, Wei G, Li H, Hao L, Liu Y, et al. Exosomal miR-10b-5p mediates cell communication of gastric cancer cells and fibroblasts and facilitates cell proliferation. J Cancer. 2021;12:2140–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gong W, Guo Y, Yuan H, Chai R, Wan Z, Zheng B, et al. Loss of exosomal miR-200b-3p from hypoxia cancer-associated fibroblasts promotes tumorigenesis and reduces sensitivity to 5-Flourouracil in colorectal cancer via upregulation of ZEB1 and E2F3. Cancer Gene Ther. 2023;30:905–16.

    Article  CAS  PubMed  Google Scholar 

  82. Rezaei R, Baghaei K, Hashemi SM, Zali MR, Ghanbarian H, Amani D. Tumor-derived exosomes enriched by miRNA-124 promote anti-tumor immune response in CT-26 tumor-bearing mice. Front. 2021. https://doi.org/10.3389/fmed.2021.619939.

    Article  Google Scholar 

  83. Jahangiri B, Khalaj-Kondori M, Asadollahi E, Purrafee Dizaj L, Sadeghizadeh M. MSC-Derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway. Int J Pharm. 2022;627:122214.

    Article  CAS  PubMed  Google Scholar 

  84. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83:584–94.

    Article  PubMed  Google Scholar 

  85. Zhang Z, Tang Y, Song X, Xie L, Zhao S, Song X. Tumor-derived exosomal miRNAs as diagnostic biomarkers in non-small cell lung cancer. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.560025.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tang Y, Zhang Z, Song X, Yu M, Niu L, Zhao Y, et al. Tumor-derived exosomal miR-620 as a diagnostic biomarker in non-small-cell lung cancer. J Oncol. 2020;2020:1–9.

    Article  Google Scholar 

  87. Huang D, Qu D. Early diagnostic and prognostic value of serum exosomal miR-1246 in non-small cell lung cancer. Int J Clin Exp Pathol. 2020;13:1601–7.

    PubMed  PubMed Central  Google Scholar 

  88. Zheng Q, Ding H, Wang L, Yan Y, Wan Y, Yi Y, et al. Circulating exosomal miR-96 as a novel biomarker for radioresistant non-small-cell lung cancer. J Oncol. 2021;2021:1–11.

    CAS  Google Scholar 

  89. Wang B, Mao J, Wang B, Wang L, Wen H, Xu L, et al. Exosomal miR-1910-3p promotes proliferation, metastasis, and autophagy of breast cancer cells by targeting MTMR3 and activating the NF-κB signaling pathway. Cancer Lett. 2020;489:87–99.

    Article  CAS  PubMed  Google Scholar 

  90. Hirschfeld M, Rücker G, Weiß D, Berner K, Ritter A, Jäger M, et al. Urinary exosomal microRNAs as potential non-invasive biomarkers in breast cancer detection. Mol Diagn Ther. 2020;24:215–32.

    Article  CAS  PubMed  Google Scholar 

  91. Liu M, Mo F, Song X, He Y, Yuan Y, Yan J, et al. Exosomal hsa-miR-21-5p is a biomarker for breast cancer diagnosis. PeerJ. 2021;9:e12147.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li S, Zhang M, Xu F, Wang Y, Leng D. Detection significance of miR-3662, miR-146a, and miR-1290 in serum exosomes of breast cancer patients. J Cancer Res Ther. 2021;17:749.

    Article  CAS  PubMed  Google Scholar 

  93. Guo T, Wang Y, Jia J, Mao X, Stankiewicz E, Scandura G, et al. The identification of plasma exosomal miR-423–3p as a potential predictive biomarker for prostate cancer castration-resistance development by plasma exosomal miRNA sequencing. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2020.602493.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kim MY, Shin H, Moon HW, Park YH, Park J, Lee JY. Urinary exosomal microRNA profiling in intermediate-risk prostate cancer. Sci Rep. 2021;11:7355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rode MP, Silva AH, Cisilotto J, Rosolen D, Creczynski-Pasa TB. miR-425-5p as an exosomal biomarker for metastatic prostate cancer. Cell Signal. 2021;87:110113.

    Article  CAS  PubMed  Google Scholar 

  96. Shin S, Park YH, Jung S-H, Jang S-H, Kim MY, Lee JY, et al. Urinary exosome microRNA signatures as a noninvasive prognostic biomarker for prostate cancer. NPJ Genom Med. 2021;6:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. He T, Guo X, Li X, Liao C, Wang X, He K. Plasma-derived exosomal microRNA-130a serves as a noninvasive biomarker for diagnosis and prognosis of oral squamous cell carcinoma. J Oncol. 2021;2021:1–9.

    CAS  Google Scholar 

  98. Chen C-M, Chu T-H, Chou C-C, Chien C-Y, Wang J-S, Huang C-C. Exosome-derived microRNAs in oral squamous cell carcinomas impact disease prognosis. Oral Oncol. 2021;120:105402.

    Article  CAS  PubMed  Google Scholar 

  99. Liu W, Yang D, Chen L, Liu Q, Wang W, Yang Z, et al. Plasma exosomal miRNA-139-3p is a novel biomarker of colorectal cancer. J Cancer. 2020;11:4899–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shi Y, Zhuang Y, Zhang J, Chen M, Wu S. Four circulating exosomal miRNAs as novel potential biomarkers for the early diagnosis of human colorectal cancer. Tissue Cell. 2021;70:101499.

    Article  CAS  PubMed  Google Scholar 

  101. Handa T, Kuroha M, Nagai H, Shimoyama Y, Naito T, Moroi R, et al. Liquid biopsy for colorectal adenoma: is the exosomal miRNA derived from organoid a potential diagnostic biomarker? Clin Transl Gastroenterol. 2021;12:e00356.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sanesi L, Mori G, Troiano G, Ballini A, Valzano F, Dioguardi M, et al. Salivary exosomal microRNA profile as biomonitoring tool for diagnosis and prognosis of patients with head and neck squamous cell carcinoma: a systematic review. Arch Oral Biol. 2024;165:106012.

    Article  CAS  PubMed  Google Scholar 

  103. He L, Ping F, Fan Z, Zhang C, Deng M, Cheng B, et al. Salivary exosomal miR-24-3p serves as a potential detective biomarker for oral squamous cell carcinoma screening. Biomed Pharmacother. 2020;121:109553.

    Article  CAS  PubMed  Google Scholar 

  104. Hofmann L, Abou Kors T, Ezić J, Niesler B, Röth R, Ludwig S, et al. Comparison of plasma- and saliva-derived exosomal miRNA profiles reveals diagnostic potential in head and neck cancer. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2022.971596.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the research fund from the Indian Council of Medical Research (ICMR). Grant id: 2021-9386 and Department of Biotechnology, Government of India (D.O. NO. BT/HRD/35/02/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Mohan Ram Kumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval and informed consent

The present study did not involve human participants, their data or biological material at any step of the process, in any way; thus ethical approval and informed consent do not apply to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R.M.R. Exosomal microRNAs: impact on cancer detection, treatment, and monitoring. Clin Transl Oncol (2024). https://doi.org/10.1007/s12094-024-03590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12094-024-03590-6

Keywords

Navigation