Skip to main content
Log in

Endoplasmic reticulum stress regulates apoptosis and chemotherapeutic via enhancing TNFRSF10B recycling to the cell membrane in triple-negative breast cancer

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Triple-negative breast cancer (TNBC) is the most common malignant tumor in China. The expression and cell surface levels of TNF receptor superfamily member 10B (TNFRSF10B) are associated with apoptosis and chemotherapy. However, the precise molecular mechanisms that govern the regulation of TNFRSF10B remain unclear.

Materials and methods

RNA-Seq data related to TNBC chemotherapy resistance were acquired from the GEO database. The mRNA and protein levels of TNFRSF10B were detected using RT-PCR and Western blotting, respectively. Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect cell proliferation. Annexin V/7-AAD staining was used to evaluate apoptosis. The cell membrane TNFRSF10B was analyzed by Western blotting and immunofluorescence. Inducers and inhibitors of endoplasmic reticulum stress (ERS) were used to assess the effect of ERS on TNFRSF10B localization.

Results

TNFRSF10B expression was downregulated in TNBC and was associated with prognosis. TNFRSF10B overexpression inhibits the growth of TNBC both in vivo and in vitro and can partially counteract chemotherapy resistance. ERS activation in TNBC promotes the expression of TNFRSF10B, leading to its enrichment on the cell membrane surface, thereby activating the apoptotic pathways.

Conclusion

ERS regulates the expression and subcellular localization of TNFRSF10B in TNBC cells. They synergistically affect anti-apoptosis and chemotherapy resistance in TNBC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  2. Thorsen LBJ, Overgaard J, Matthiessen LW, Berg M, Stenbygaard L, Pedersen AN, et al. Internal mammary node irradiation in patients with node-positive early breast cancer: fifteen-year results from the danish breast cancer group internal mammary node study. J Clin Oncol. 2022;40(36):4198–206. https://doi.org/10.1200/jco.22.00044.

    Article  CAS  PubMed  Google Scholar 

  3. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52. https://doi.org/10.1038/35021093.

    Article  CAS  PubMed  Google Scholar 

  4. Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, Nobel AB, et al. Concordance among gene-expression-based predictors for breast cancer. N Engl J Med. 2006;355(6):560–9. https://doi.org/10.1056/NEJMoa052933.

    Article  CAS  PubMed  Google Scholar 

  5. Choupani E, Mahmoudi Gomari M, Zanganeh S, Nasseri S, Haji-Allahverdipoor K, Rostami N, et al. Newly developed targeted therapies against the androgen receptor in triple-negative breast cancer: a review. Pharmacol Rev. 2023;75(2):309–27. https://doi.org/10.1124/pharmrev.122.000665.

    Article  CAS  PubMed  Google Scholar 

  6. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer. 2007;109(9):1721–8. https://doi.org/10.1002/cncr.22618.

    Article  PubMed  Google Scholar 

  7. Bai X, Ni J, Beretov J, Graham P, Li Y. Triple-negative breast cancer therapeutic resistance: Where is the Achilles’ heel? Cancer Lett. 2021;497:100–11. https://doi.org/10.1016/j.canlet.2020.10.016.

    Article  CAS  PubMed  Google Scholar 

  8. Anurag M, Jaehnig EJ, Krug K, Lei JT, Bergstrom EJ, Kim BJ, et al. Proteogenomic markers of chemotherapy resistance and response in triple-negative breast cancer. Cancer Discov. 2022;12(11):2586–605. https://doi.org/10.1158/2159-8290.Cd-22-0200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huppert LA, Gumusay O, Rugo HS. Emerging treatment strategies for metastatic triple-negative breast cancer. Ther Adv Med Oncol. 2022;14:17588359221086916. https://doi.org/10.1177/17588359221086916.

    Article  PubMed  PubMed Central  Google Scholar 

  10. von Minckwitz G, Martin M. Neoadjuvant treatments for triple-negative breast cancer (TNBC). Ann Oncol. 2012;23:35–9. https://doi.org/10.1093/annonc/mds193.

    Article  Google Scholar 

  11. Wang Y, Guo S, Li D, Tang Y, Li L, Su L, et al. YIPF2 promotes chemotherapeutic agent-mediated apoptosis via enhancing TNFRSF10B recycling to plasma membrane in non-small cell lung cancer cells. Cell Death Dis. 2020;11(4):242. https://doi.org/10.1038/s41419-020-2436-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shin GC, Kang HS, Lee AR, Kim KH. Hepatitis B virus-triggered autophagy targets TNFRSF10B/death receptor 5 for degradation to limit TNFSF10/TRAIL response. Autophagy. 2016;12(12):2451–66. https://doi.org/10.1080/15548627.2016.1239002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hattori T, Fundora KA, Hamamoto K, Opozda DM, Liang X, Liu X. ER stress elicits non-canonical CASP8 (caspase 8) activation on autophagosomal membranes to induce apoptosis. Autophagy. 2023;20(1):16.

    Google Scholar 

  14. Deng D, Shah K. TRAIL of hope meeting resistance in cancer. Trends Cancer. 2020;6(12):989–1001. https://doi.org/10.1016/j.trecan.2020.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang L, Fang B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther. 2005;12(3):228–37. https://doi.org/10.1038/sj.cgt.7700792.

    Article  CAS  PubMed  Google Scholar 

  16. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 2015;10:173–94. https://doi.org/10.1146/annurev-pathol-012513-104649.

    Article  CAS  PubMed  Google Scholar 

  18. Metcalf MG, Higuchi-Sanabria R, Garcia G, Tsui CK, Dillin A. Beyond the cell factory: Homeostatic regulation of and by the UPR(ER). Sci Adv. 2020;6(29):abb9614. https://doi.org/10.1126/sciadv.abb9614.

    Article  CAS  Google Scholar 

  19. Rivadeneira DB, Delgoffe GM. Antitumor T-cell reconditioning: improving metabolic fitness for optimal cancer immunotherapy. Clin Cancer Res. 2018;24(11):2473–81. https://doi.org/10.1158/1078-0432.Ccr-17-0894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. 2016;73(1):79–94. https://doi.org/10.1007/s00018-015-2052-6.

    Article  CAS  PubMed  Google Scholar 

  21. Bahar E, Kim JY, Yoon H. Chemotherapy resistance explained through endoplasmic reticulum stress-dependent signaling. Cancers (Basel). 2019;11(3):338. https://doi.org/10.3390/cancers11030338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riganti C, Kopecka J, Panada E, Barak S, Rubinstein M. The role of C/EBP-β LIP in multidrug resistance. J Natl Cancer Inst. 2015;107(5):djv046. https://doi.org/10.1093/jnci/djv046.

    Article  CAS  PubMed  Google Scholar 

  23. Salaroglio IC, Panada E, Moiso E, Buondonno I, Provero P, Rubinstein M, et al. PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy. Mol Cancer. 2017;16(1):91. https://doi.org/10.1186/s12943-017-0657-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer. 2009;9(7):501–7. https://doi.org/10.1038/nrc2663.

    Article  CAS  PubMed  Google Scholar 

  25. Símová S, Klíma M, Cermak L, Sourková V, Andera L. Arf and Rho GAP adapter protein ARAP1 participates in the mobilization of TRAIL-R1/DR4 to the plasma membrane. Apoptosis. 2008;13(3):423–36. https://doi.org/10.1007/s10495-007-0171-8.

    Article  CAS  PubMed  Google Scholar 

  26. Kojima Y, Nakayama M, Nishina T, Nakano H, Koyanagi M, Takeda K, et al. Importin β1 protein-mediated nuclear localization of death receptor 5 (DR5) limits DR5/tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced cell death of human tumor cells. J Biol Chem. 2011;286(50):43383–93. https://doi.org/10.1074/jbc.M111.309377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang XD, Franco AV, Nguyen T, Gray CP, Hersey P. Differential localization and regulation of death and decoy receptors for TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. J Immunol. 2000;164(8):3961–70. https://doi.org/10.4049/jimmunol.164.8.3961.

    Article  CAS  PubMed  Google Scholar 

  28. Akazawa Y, Mott JL, Bronk SF, Werneburg NW, Kahraman A, Guicciardi ME, et al. Death receptor 5 internalization is required for lysosomal permeabilization by TRAIL in malignant liver cell lines. Gastroenterology. 2009;136(7):2365–76. https://doi.org/10.1053/j.gastro.2009.02.071.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Home for Researchers editorial team (www.home-for-researchers.com) for language editing service.

Author information

Authors and Affiliations

Authors

Contributions

Dapeng Zhao performed most experiments and drafted the manuscript; Jian Song analyzed the data; Chongyao Ji assisted in manuscript writing.

Corresponding author

Correspondence to Dapeng Zhao.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Institutional review board statement

The study was reviewed and approved by the Faculty of Science Ethics Committee at the General Hospital of Fushun Mining Bureau of Liaoning Health Industry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 21 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Song, J. & Ji, C. Endoplasmic reticulum stress regulates apoptosis and chemotherapeutic via enhancing TNFRSF10B recycling to the cell membrane in triple-negative breast cancer. Clin Transl Oncol (2024). https://doi.org/10.1007/s12094-024-03509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12094-024-03509-1

Keywords

Navigation