Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Impact of Prenatal Acetaminophen Exposure for Hippocampal Development Disorder on Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

This article was retracted on 30 April 2024

This article has been updated

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used as analgesic agents. They have been detected in various environmental matrices. The degradation of environmental contaminants and the long-term adverse effects have become a major public concern. Prenatal exposure to acetaminophen can cause damage to the developing hippocampus. However, the molecular mechanisms behind hippocampal damage following prenatal acetaminophen exposure (PAcE) remain unclear. The present study shows an increased risk of adverse neurodevelopmental outcomes in offspring following exposure to acetaminophen during pregnancy on mice. The results revealed that different doses, timings, and duration of exposure to acetaminophen during pregnancy were associated with dose-dependent changes in the hippocampus of the offspring. Furthermore, exposure to high doses, multiple-treatment courses, and late pregnancy induced pathological changes, such as wrinkling and vacuolation, inhibited hippocampal proliferation and increased apoptosis. In addition, PAcE significantly decreased the expression of genes related to synaptic development in fetal hippocampal neurons and hippocampal astrocyte and microglia were also damaged to varying degrees. The significant reduction either in SOX2, an essential gene in regulating neural progenitor cell proliferation, and reduction of genes related to the SOX2/Notch pathway may suggest that the role of SOX2/Notch pathway in impaired hippocampal development in the offspring due to PAcE. In general, PAcE at high doses, multiple-treatment courses, and mid- and late gestation were associated with neurodevelopmental toxicity to the offspring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data are available upon reasonable request.

Change history

References

  1. Sundararaman S, Aravind Kumar J, Deivasigamani P, Devarajan Y (2022) Emerging pharma residue contaminants: occurrence, monitoring, risk and fate assessment - a challenge to water resource management. Sci Total Environ 825:153897

    Article  CAS  PubMed  Google Scholar 

  2. Szopińska M, Potapowicz J, Jankowska K, Luczkiewicz A, Svahn O, Björklund E, Nannou C, Lambropoulou D et al (2022) Pharmaceuticals and other contaminants of emerging concern in Admiralty Bay as a result of untreated wastewater discharge: Status and possible environmental consequences. Sci Total Environ 835:155400

    Article  PubMed  Google Scholar 

  3. Żur J, Piński A, Marchlewicz A, Hupert-Kocurek K, Wojcieszyńska D, Guzik U (2018) Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria. Environ Sci Pollut Res Int 25(22):21498–21524

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fekadu S, Alemayehu E, Dewil R, Van der Bruggen B (2019) Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Sci Total Environ 654:324–337

    Article  CAS  PubMed  Google Scholar 

  5. Forrest JA, Clements JA, Prescott LF (1982) Clinical pharmacokinetics of paracetamol. Clin Pharmacokinet 7(2):93–107

    Article  CAS  PubMed  Google Scholar 

  6. Berlin CM Jr, Yaffe SJ, Ragni M (1980) Disposition of acetaminophen in milk, saliva, and plasma of lactating women. Pediatr Pharmacol (New York) 1(2):135–141

    CAS  PubMed  Google Scholar 

  7. Liew Z, Nohr EA, Morgen CS, Ernst A, Li J, Sørensen TIA, Olsen J (2019) Prenatal Exposure to Acetaminophen and Overweight in Childhood. Obesity (Silver Spring, Md.) 27(8):1314–1322

    Article  CAS  PubMed  Google Scholar 

  8. Ystrom E, Gustavson K, Brandlistuen RE, Knudsen GP, Magnus P, Susser E, Davey Smith G, Stoltenberg C et al (2017) Prenatal Exposure to Acetaminophen and Risk of ADHD. Pediatrics 140(5):e20163840

    Article  PubMed  Google Scholar 

  9. Sordillo JE, Rifas-Shiman SL, Switkowski K, Coull B, Gibson H, Rice M, Platts-Mills TAE, Kloog I et al (2019) Prenatal oxidative balance and risk of asthma and allergic disease in adolescence. The Journal of Allergy and Clinical Immunology 144(6):1534-1541.e5

    Article  CAS  PubMed  Google Scholar 

  10. Liew Z, Ritz B, Virk J, Olsen J (2016) Maternal use of acetaminophen during pregnancy and risk of autism spectrum disorders in childhood: A Danish national birth cohort study. Autism Research : Official Journal of the International Society For Autism Research 9(9):951–958

    Article  PubMed  Google Scholar 

  11. Chen M-H, Pan T-L, Wang P-W, Hsu J-W, Huang K-L, Su T-P, Li C-T, Lin W-C et al (2019) Prenatal Exposure to Acetaminophen and the Risk of Attention-Deficit/Hyperactivity Disorder: A Nationwide Study in Taiwan. The Journal of Clinical Psychiatry 80(5):18m12612

    Article  PubMed  Google Scholar 

  12. Bauer AZ, Swan SH, Kriebel D, Liew Z, Taylor HS, Bornehag CG, Andrade AM, Olsen J et al (2021) Paracetamol use during pregnancy - a call for precautionary action. Nat Rev Endocrinol 17(12):757–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liew Z, Ernst A (2021) Intrauterine Exposure to Acetaminophen and Adverse Developmental Outcomes: Epidemiological Findings and Methodological Issues. Curr Environ Health Rep 8(1):23–33

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Zhang Y, Zheng X, Fang T, Yang X, Luo X, Guo A, Newell KA et al (2018) Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J Neuroinflammation 15(1):112

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zheng Y, Zhang YM, Tang ZS, Du JK, Guo DW, Xu YJ, Sheng H, Lu JQ et al (2021) Spatial learning and memory deficits induced by prenatal glucocorticoid exposure depend on hippocampal CRHR1 and CXCL5 signaling in rats. J Neuroinflammation 18(1):85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soares-Cunha C, Coimbra B, Borges S, Domingues AV, Silva D, Sousa N, Rodrigues AJ (2018) Mild Prenatal Stress Causes Emotional and Brain Structural Modifications in Rats of Both Sexes. Front Behav Neurosci 12:129

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gaspar R, Soares-Cunha C, Domingues AV, Coimbra B, Baptista FI, Pinto L, Ambrósio AF, Rodrigues AJ et al (2021) Resilience to stress and sex-specific remodeling of microglia and neuronal morphology in a rat model of anxiety and anhedonia. Neurobiol Stress 14:100302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, Harony-Nicolas H, De Rubeis S et al (2017) Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol 134(4):537–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mirabella F, Desiato G, Mancinelli S, Fossati G, Rasile M, Morini R, Markicevic M, Grimm C et al (2021) Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 54(11):2611-2631.e2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benya-Aphikul H, Pongrakhananon V, Chetprayoon P, Sooksawate T, Rodsiri R (2021) Neuronal growth and synaptogenesis are inhibited by prenatal methamphetamine exposure leading to memory impairment in adolescent and adult mice. Toxicol Lett 351:99–110

    Article  CAS  PubMed  Google Scholar 

  21. Zafeiri A, Mitchell RT, Hay DC, Fowler PA (2021) Over-the-counter analgesics during pregnancy: a comprehensive review of global prevalence and offspring safety. Hum Reprod Update 27(1):67–95

    Article  PubMed  Google Scholar 

  22. Klein RM, Rigobello C, Vidigal CB, Moura KF, Barbosa DS, Gerardin DCC, Ceravolo GS, Moreira EG (2020) Gestational exposure to paracetamol in rats induces neurofunctional alterations in the progeny. Neurotoxicol Teratol 77:106838

    Article  CAS  PubMed  Google Scholar 

  23. Rigby MJ, Gomez TM, Puglielli L (2020) Glial Cell-Axonal Growth Cone Interactions in Neurodevelopment and Regeneration. Frontiers In Neuroscience 14:203

    Article  PubMed  PubMed Central  Google Scholar 

  24. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9(1):65–75

    Article  CAS  PubMed  Google Scholar 

  25. Mendez P, Stefanelli T, Flores CE, Muller D, Lüscher C (2018) Homeostatic Plasticity in the Hippocampus Facilitates Memory Extinction. Cell Rep 22(6):1451–1461

    Article  CAS  PubMed  Google Scholar 

  26. Marsden WN (2013) Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog Neuropsychopharmacol Biol Psychiatry 43:168–184

    Article  CAS  PubMed  Google Scholar 

  27. Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, Gonçalves RA, Clarke JR et al (2019) Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med 25(1):165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geis C, Planagumà J, Carreño M, Graus F, Dalmau J (2019) Autoimmune seizures and epilepsy. J Clin Invest 129(3):926–940

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zeng HC, Zhang L, Li YY, Wang YJ, Xia W, Lin Y, Wei J, Xu SQ (2011) Inflammation-like glial response in rat brain induced by prenatal PFOS exposure. Neurotoxicology 32(1):130–139

    Article  CAS  PubMed  Google Scholar 

  30. Middeldorp J, Hol EM (2011) GFAP in health and disease. Progress In Neurobiology 93(3):421–443

    Article  CAS  PubMed  Google Scholar 

  31. Michetti F, D’Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC (2019) The S100B story: from biomarker to active factor in neural injury. Journal of Neurochemistry 148(2):168–187

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Jing Y, Zhang H, Bilkey DK, Liu P (2018) Maternal immune activation altered microglial immunoreactivity in the brain of postnatal day 2 rat offspring. Synapse e22072

  33. Toda T, Parylak SL, Linker SB, Gage FH (2019) The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 24(1):67–87

    Article  CAS  PubMed  Google Scholar 

  34. Berger T, Lee H, Young AH, Aarsland D, Thuret S (2020) Adult Hippocampal Neurogenesis in Major Depressive Disorder and Alzheimer’s Disease. Trends Mol Med 26(9):803–818

    Article  PubMed  Google Scholar 

  35. Babcock KR, Page JS, Fallon JR, Webb AE (2021) Adult Hippocampal Neurogenesis in Aging and Alzheimer’s Disease. Stem Cell Reports 16(4):681–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Åkesson E, Sundström E (2016) Human neural progenitor cells in central nervous system lesions. Best Pract Res Clin Obstet Gynaecol 31:69–81

    Article  PubMed  Google Scholar 

  37. Lee H, Yun S, Kim IS, Lee IS, Shin JE, Park SC, Kim WJ, Park KI (2014) Human fetal brain-derived neural stem/progenitor cells grafted into the adult epileptic brain restrain seizures in rat models of temporal lobe epilepsy. PLoS One 9(8):e104092

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jessberger S, Parent JM (2015) Epilepsy and Adult Neurogenesis. Cold Spring Harb Perspect Biol 7(12):a020677

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cui C-P, Zhang Y, Wang C, Yuan F, Li H, Yao Y, Chen Y, Li C et al (2018) Dynamic ubiquitylation of Sox2 regulates proteostasis and governs neural progenitor cell differentiation. Nature Communications 9(1):4648

    Article  PubMed  PubMed Central  Google Scholar 

  40. Meneghini V, Bortolotto V, Francese MT, Dellarole A, Carraro L, Terzieva S, Grilli M (2013) High-mobility group box-1 protein and β-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-κB axis: relevance for Alzheimer’s disease. J Neurosci Off J Soc Neurosci 33(14):6047–6059

    Article  CAS  PubMed  Google Scholar 

  41. Mishra D, Tiwari SK, Agarwal S, Sharma VP, Chaturvedi RK (2012) Prenatal carbofuran exposure inhibits hippocampal neurogenesis and causes learning and memory deficits in offspring. Toxicol Sci 127(1):84–100

    Article  CAS  PubMed  Google Scholar 

  42. Jiang T, Hu S, Dai S, Yi Y, Wang T, Li X, Luo M, Li K et al (2022) Programming changes of hippocampal miR-134-5p/SOX2 signal mediate the susceptibility to depression in prenatal dexamethasone-exposed female offspring. Cell Biol Toxicol 38(1):69–86

    Article  CAS  PubMed  Google Scholar 

  43. Fan Y, Gao X, Chen J, Liu Y, He JJ (2016) HIV Tat Impairs Neurogenesis through Functioning As a Notch Ligand and Activation of Notch Signaling Pathway. J Neurosci Off J Soc Neurosci 36(44):11362–11373

    Article  CAS  PubMed  Google Scholar 

  44. Li X-J, Liu X-J, Yang B, Fu Y-R, Zhao F, Shen Z-Z, Miao L-F, Rayner S et al (2015) Human Cytomegalovirus Infection Dysregulates the Localization and Stability of NICD1 and Jag1 in Neural Progenitor Cells. J Virol 89(13):6792–6804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaltezioti V, Kouroupi G, Oikonomaki M, Mantouvalou E, Stergiopoulos A, Charonis A, Rohrer H, Matsas R et al (2010) Prox1 regulates the notch1-mediated inhibition of neurogenesis. PLoS Biology 8(12):e1000565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alunni A, Bally-Cuif L (2016) A comparative view of regenerative neurogenesis in vertebrates. Development (Cambridge, England) 143(5):741–753

    Article  CAS  PubMed  Google Scholar 

  47. Engler A, Zhang R, Taylor V (2018) Notch and Neurogenesis. Adv Exp Med Biol 1066:223–234

    Article  CAS  PubMed  Google Scholar 

  48. Mason HA, Rakowiecki SM, Gridley T, Fishell G (2006) Loss of notch activity in the developing central nervous system leads to increased cell death. Dev Neurosci 28(1–2):49–57

    Article  CAS  PubMed  Google Scholar 

  49. Meredith RM (2015) Sensitive and critical periods during neurotypical and aberrant neurodevelopment: a framework for neurodevelopmental disorders. Neurosci Biobehav Rev 50:180–188

    Article  CAS  PubMed  Google Scholar 

  50. Dean SL, Knutson JF, Krebs-Kraft DL, McCarthy MM (2012) Prostaglandin E2 is an endogenous modulator of cerebellar development and complex behavior during a sensitive postnatal period. Eur J Neurosci 35(8):1218–1229

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bauer AZ, Kriebel D, Herbert MR, Bornehag CG, Swan SH (2018) Prenatal paracetamol exposure and child neurodevelopment: A review. Horm Behav 101:125–147

    Article  CAS  PubMed  Google Scholar 

  52. Suzuki K (2018) The developing world of DOHaD. J Dev Orig Health Dis 9(3):266–269

    Article  CAS  PubMed  Google Scholar 

  53. Csaba G (2020) DOHaD: a disease-oriented, epoch-making, British-originated theory with Hungarian roots. Orvosi Hetilap 161(16):603–609

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yu Guo for technical support.

Funding

This work was supported by grants from the National Key Research and Development Program of China (No. 2020YFA0803900), the National Natural Science Foundation of China (Nos. 82122071, 81973405, 82030111), and Joint Foundation of Translational Medicine and Interdisciplinary Research, Zhongnan Hospital, Wuhan University (No. ZNJC202230).

Author information

Authors and Affiliations

Authors

Contributions

Lulu Xie and Jiaxin Qin performed the research; Lulu Xie and Jiaxin Qin wrote and revised the paper; Dan Xu, Biwen Peng and Baozhen Yao designed the research study; Jiaxin Qin, Lulu Xie, Tingting Wang, Shuai Zhang, Mingcui Luo, Xuelei Cheng, Xinrui Cao, Dan Xu, Biwen Peng, and Baozhen Yao wrote and revised the paper; all authors approved the final manuscript.

Corresponding authors

Correspondence to Baozhen Yao, Dan Xu or Biwen Peng.

Ethics declarations

Ethics Approval

The protocol was approved by the Committee on the Ethics of Animal Experiments of the Wuhan University School of Medicine (permit number: WG2020-0001).

Consent to Participate

All participants in this study provided informed written consent.

Consent for Publication

The authors approved the publication of article.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s12035-024-04202-8

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Qin, J., Wang, T. et al. RETRACTED ARTICLE: Impact of Prenatal Acetaminophen Exposure for Hippocampal Development Disorder on Mice. Mol Neurobiol 60, 6916–6930 (2023). https://doi.org/10.1007/s12035-023-03515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03515-4

Keywords

Navigation