Skip to main content

Advertisement

Log in

Raman Spectroscopy of Blood Serum for Essential Thrombocythemia Diagnosis: Correlation with Genetic Mutations and Optimization of Laser Wavelengths

  • Letter to the editor
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Essential thrombocythemia (ET) is a type of myeloproliferative neoplasm that increases the risk of thrombosis. To diagnose this disease, the analysis of mutations in the Janus Kinase 2 (JAK2), thrombopoietin receptor (MPL), or calreticulin (CALR) gene is recommended. Disease poses diagnostic challenges due to overlapping mutations with other neoplasms and the presence of triple-negative cases. This study explores the potential of Raman spectroscopy combined with machine learning for ET diagnosis. We assessed two laser wavelengths (785, 1064 nm) to differentiate between ET patients and healthy controls. The PCR results indicate that approximately 50% of patients in our group have a mutation in the JAK2 gene, while only 5% of patients harbor a mutation in the ASXL1 gene. Additionally, only one patient had a mutation in the IDH1 and one had a mutation in IDH2 gene. Consequently, patients having no mutations were also observed in our group, making diagnosis challenging. Raman spectra at 1064 nm showed lower amide, polysaccharide, and lipid vibrations in ET patients, while 785 nm spectra indicated significant decreases in amide II and C-H lipid vibrations. Principal Component Analysis (PCA) confirmed that both wavelengths could distinguish ET from healthy subjects. Support Vector Machine (SVM) analysis revealed that the 800–1800 cm−1 range provided the highest diagnostic accuracy, with 89% for 785 nm and 72% for 1064 nm. These findings suggest that FT-Raman spectroscopy, paired with multivariate and machine learning analyses, offers a promising method for diagnosing ET with high accuracy by detecting specific molecular changes in serum. Principal Component Analysis (PCA) confirmed that both wavelengths could distinguish ET from healthy subjects. Support Vector Machine (SVM) analysis revealed that the 800–1800 cm−1 range provided the highest diagnostic accuracy, with 89% for 785 nm and 72% for 1064 nm. These findings suggest that FT-Raman spectroscopy, paired with multivariate and machine learning analyses, offers a promising method for diagnosing ET with high accuracy by detecting specific molecular changes in serum.

Highlights

  • Mutations in the JAK2 gene are present in 50% of patients, while mutations in the ASXL1, IDH1, and IDH2 genes are present in 5, 1.2 and 1.2% of patients.

  • A strong correlation to the mutations in JAK2, ASXL1 and IDH1 genes.

  • The accuracy of the 785 nm laser was 89%, while that of the 1064 nm laser was 66%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Data is provided within the manuscript or supplementary information files

References

  1. Arber, D. A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., & Vardiman, J. W. (2016). The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 127(20), 2391–2405. https://doi.org/10.1182/blood-2016-03-643544.

    Article  CAS  PubMed  Google Scholar 

  2. Khoury, J. D., Solary, E., Abla, O., Akkari, Y., Alaggio, R., Apperley, J. F., & Hochhaus, A. (2022). The 5th edition of the World Health Organization Classification of haematolymphoid tumours: myeloid and Histiocytic/dendritic neoplasms. Leukemia, 36(7), 1703–1719. https://doi.org/10.1038/s41375-022-01613-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Varghese, C., Immanuel, T., Ruskova, A., Theakston, E., & Kalev-Zylinska, M. L. (2021). The epidemiology of myeloproliferative neoplasms in New Zealand between 2010 and 2017: Insights from the New Zealand cancer registry. Current Oncology, 28(2), 1544–1557. https://doi.org/10.3390/curroncol28020146.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Verstovsek, S., Yu, J., Scherber, R. M., Verma, S., Dieyi, C., Chen, C. C., & Parasuraman, S. (2022). Changes in the incidence and overall survival of patients with myeloproliferative neoplasms between 2002 and 2016 in the United States. Leukemia and Lymphoma, 63(3), 694–702. https://doi.org/10.1080/10428194.2021.1992756.

    Article  CAS  PubMed  Google Scholar 

  5. Tefferi, A. (2021). Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management. American Journal of Hematology, 96(1), 145–162. https://doi.org/10.1002/ajh.26050.

    Article  CAS  PubMed  Google Scholar 

  6. Tefferi, A., Guglielmelli, P., Larson, D. R., Finke, C., Wassie, E. A., Pieri, L., & Vannucchi, A. M. (2014). Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood, 124(16), 2507–2513. https://doi.org/10.1182/blood-2014-05-579136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alduaij, W., McNamara, C. J., Schuh, A., Arruda, A., Sukhai, M., Kanwar, N., … Gupta, V. (2018). Clinical utility of next-generation sequencing in the management of myeloproliferative neoplasms: A single-center experience. HemaSphere, 2(3). https://doi.org/10.1097/HS9.0000000000000044

  8. Maddali, M., Venkatraman, A., Kulkarni, U. P., Mani, S., Raj, S., Sigamani, E., & Balasubramanian, P. (2022). Molecular characterization of triple-negative myeloproliferative neoplasms by next-generation sequencing. Annals of Hematology, 101(9), 1987–2000. https://doi.org/10.1007/s00277-022-04920-w.

    Article  CAS  PubMed  Google Scholar 

  9. Cattaneo, D., Croci, G. A., Bucelli, C., Tabano, S., Cannone, M. G., Gaudioso, G., & Iurlo, A. (2021). Triple-negative essential thrombocythemia: clinical-pathological and molecular features. a single-center cohort study. Frontiers in Oncology, 11, 637116 https://doi.org/10.3389/FONC.2021.637116/BIBTEX.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perner, F., Perner, C., Ernst, T., & Heidel, F. H. (2019). Roles of JAK2 in aging, inflammation, hematopoiesis and malignant transformation. Cells, 8(8), 854 https://doi.org/10.3390/cells8080854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vitkova, A., Walker, S. J. I., & Sykulska-Lawrence, H. (2022). Cryogenically induced signal enhancement of Raman spectra of porphyrin molecules. Analytical Methods, 14(34), 3307–3314. https://doi.org/10.1039/d2ay00538g.

    Article  CAS  PubMed  Google Scholar 

  12. Auner, G. W., Koya, S. K., Huang, C., Broadbent, B., Trexler, M., Auner, Z., & Brusatori, M. A. (2018). Applications of Raman spectroscopy in cancer diagnosis. Cancer and Metastasis Reviews, 37(4), 691–717. https://doi.org/10.1007/s10555-018-9770-9.

    Article  CAS  PubMed  Google Scholar 

  13. Bai, Y., Yu, Z., Yi, S., Yan, Y., Huang, Z., & Qiu, L. (2020). Raman spectroscopy-based biomarker screening by studying the fingerprint characteristics of chronic lymphocytic leukemia and diffuse large B-cell lymphoma. Journal of Pharmaceutical and Biomedical Analysis, 190, 113514 https://doi.org/10.1016/j.jpba.2020.113514.

    Article  CAS  PubMed  Google Scholar 

  14. Liang, H., Cheng, X., Dong, S., Wang, H., Liu, E., Ru, Y., & Gao, Y. (2022). Rapid and non-invasive discrimination of acute leukemia bone marrow supernatants by Raman spectroscopy and multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis, 210, 114560 https://doi.org/10.1016/j.jpba.2021.114560.

    Article  CAS  PubMed  Google Scholar 

  15. Suksuratin, P., Rodpai, R., Luvira, V., Intapan, P. M., Maleewong, W., & Chuchuen, O. (2022). Rapid label-free detection of cholangiocarcinoma from human serum using Raman spectroscopy. PLoS ONE, 17. https://doi.org/10.1371/journal.pone.0275362

  16. Wang, H., Zhang, S., Wan, L., Sun, H., Tan, J., & Su, Q. (2018). Screening and staging for non-small cell lung cancer by serum laser Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 201, 34–38. https://doi.org/10.1016/j.saa.2018.04.002.

    Article  CAS  PubMed  Google Scholar 

  17. Guleken, Z., Jakubczyk, P., Paja, W., Pancerz, K., Wosiak, A., Yaylım, İ., & Depciuch, J. (2023). An application of raman spectroscopy in combination with machine learning to determine gastric cancer spectroscopy marker. Computer Methods and Programs in Biomedicine, 234, 107523 https://doi.org/10.1016/j.cmpb.2023.107523.

    Article  PubMed  Google Scholar 

  18. Wartewig, S. (2003). IR and Raman Spectroscopy. IR and Raman Spectroscopy, 175. https://doi.org/10.1002/3527601635

  19. Luo, J., Ying, K., & Bai, J. (2005). Savitzky-Golay smoothing and differentiation filter for even number data. Signal Processing, 85(7), 1429–1434. https://doi.org/10.1016/j.sigpro.2005.02.002.

    Article  Google Scholar 

  20. Gonzalez-Chica, D. A., Bastos, J. L., Duquia, R. P., Bonamigo, R. R., & Martínez-Mesa, J. (2015). Test of association: which one is the most appropriate for my study? Anais Brasileiros de Dermatologia, 90(4), 523 https://doi.org/10.1590/ABD1806-4841.20154289.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xiao, B. (2010). Principal component analysis for feature extraction of image sequence. CCTAE 2010 - 2010. International Conference on Computer and Communication Technologies in Agriculture Engineering, 1, 250–253. https://doi.org/10.1109/CCTAE.2010.5544358.

    Article  Google Scholar 

  22. Siuly, S., & Li, Y. (2015). Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification. Computer Methods and Programs in Biomedicine, 119(1), 29–42. https://doi.org/10.1016/j.cmpb.2015.01.002.

    Article  PubMed  Google Scholar 

  23. Guleken, Z., Kuruca, S. E., Ünübol, B., Toraman, S., Bilici, R., Sarıbal, D., … Depciuch, J. (2020). Biochemical assay and spectroscopic analysis of oxidative/antioxidative parameters in the blood and serum of substance use disorders patients. A methodological comparison study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 240. https://doi.org/10.1016/j.saa.2020.118625.

  24. Wolf, S., Domes, R., Merian, A., Domes, C., & Frosch, T. (2022). Parallelized Raman difference spectroscopy for the investigation of chemical interactions. Analytical Chemistry, 94(29), 10346–10354. https://doi.org/10.1021/acs.analchem.2c00222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dogan, G. Y., Halimoglu, G., Kaplanoglu, D., Aksoy, U. M., Kandeger, A., Yavuz, E. & & Ildiz, G. O. (2024). Raman spectra of blood serum as holistic biomarker for differential Auxiliary Diagnoses of Attention Deficit and Hyperactivity Disorder (ADHD) in adults. Spectroscopy Journal, 2(2), 53–67. https://doi.org/10.3390/SPECTROSCJ2020004.

    Article  Google Scholar 

  26. Zou, Y., Xia, P., Yang, F., Cao, F., Ma, K., Mi, Z., & Chen, X. (2016). Whole blood and semen identification using mid-infrared and Raman spectrum analysis for forensic applications. Analytical Methods, 8(18), 3763–3767. https://doi.org/10.1039/C5AY03337C.

    Article  CAS  Google Scholar 

  27. Notingher, I., Green, C., Dyer, C., Perkins, E., Hopkins, N., Lindsay, C., & Hench, L. L. (2004). Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy. Journal of the Royal Society Interface, 1(1), 79–90. https://doi.org/10.1098/rsif.2004.0008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Constantinescu, S. N., Vainchenker, W., Levy, G., & Papadopoulos, N. (2021). Functional consequences of mutations in myeloproliferative neoplasms. HemaSphere, 5(6), E578 https://doi.org/10.1097/HS9.0000000000000578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Movasaghi, Z., Rehman, S., & Rehman, I. U. (2008). Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 43(2), 134–179. https://doi.org/10.1080/05704920701829043.

    Article  CAS  Google Scholar 

  30. Mesa, R. A., Huang, J., Schwager, S., Pardanani, A., Hussein, K., Dingli, D., & Tefferi, A. (2007). Hypocholesterolemia Is independently associated with decreased survival in patients with primary myelofibrosis: An analysis of lipid profiles in 558 myeloproliferative patients. Blood, 110(11), 2548–2548. https://doi.org/10.1182/blood.v110.11.2548.2548.

    Article  Google Scholar 

  31. Ogruc Ildiz, G., Celik, O., Atak, C., Yilmaz, A., Kabuk, H. N., Kaygisiz, E., & Fausto, R. (2020). Raman spectroscopic and chemometric investigation of lipid–protein ratio contents of soybean mutants. Applied Spectroscopy, 74(1), 34–41. https://doi.org/10.1177/0003702819859940.

    Article  CAS  PubMed  Google Scholar 

  32. Siriwaseree, J., Sanachai, K., Aiebchun, T., Tabtimmai, L., Kuaprasert, B., & Choowongkomon, K. (2022). Synchrotron fourier transform infrared microscopy spectra in cellular effects of Janus kinase inhibitors on myelofibrosis cancer cells. ACS Omega, 7(26), 22797–22803. https://doi.org/10.1021/acsomega.2c02404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robinson, A. J., & Godfrey, A. L. (2021). Low-risk essential thrombocythemia: A comprehensive review. HemaSphere, 5(2). https://doi.org/10.1097/HS9.0000000000000521.

  34. Periayah, M. H., Halim, A. S., & Saad, A. Z. M. (2017). Mechanism action of platelets and crucial blood coagulation pathways in Hemostasis. International Journal of Hematology-Oncology and Stem Cell Research, 11(4), 319–327. Retrieved from /pmc/articles/PMC5767294/.

    PubMed  PubMed Central  Google Scholar 

  35. Guleken, Z., Depciuch, J., Ceylan, Z., Jakubczyk, P., Jakubczyk, D., Nalçacı, M., & Hindilerden, F. (2023). Raman spectroscopy-based biomarker screening by studying the fingerprint and lipid characteristics of Polycythem. a Vera cases blood serum. Photodiagnosis and Photodynamic Therapy, 42, 103572 https://doi.org/10.1016/j.pdpdt.2023.103572.

    Article  CAS  PubMed  Google Scholar 

  36. Depciuch, J., Jakubczyk, P., Paja, W., Pancerz, K., Wosiak, A., Kula-Maximenko, M., … Guleken, Z. (2023). Correlation between human colon cancer specific antigens and Raman spectra. Attempting to use Raman spectroscopy in the determination of tumor markers for colon cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 102657. https://doi.org/10.1016/J.NANO.2023.102657.

  37. Zhao, J., Zeng, H., Kalia, S., & Lui, H. (2019). Incorporating patient demographics into Raman spectroscopy algorithm improves in vivo skin cancer diagnostic specificity. Translational Biophotonics, 1(1–2), e201900016 https://doi.org/10.1002/tbio.201900016.

    Article  Google Scholar 

  38. Khristoforova, Y., Bratchenko, I., Bratchenko, L., Moryatov, A., Kozlov, S., Kaganov, O., & Zakharov, V. (2022). Combination of optical biopsy with patient data for improvement of skin tumor identification. Diagnostics, 12(10), 2503 https://doi.org/10.3390/diagnostics12102503.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Agarwal, U. P. (1986). Chapter 9 An Overview of Raman Spectroscopy as Applied to Lignocellulosic Materials. Retrieved May 17, 2024, from https://www.researchgate.net/publication/249994635_An_Overview_of_Raman_Spectroscopy_as_Applied_to_Lignocellulosic_Materials.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Aynur Aday: Data curation, Investigation, Writing – original draft. Ayşe Gül Bayrak: Data curation. Suat Toraman: Data curation İpek Yönal Hindilerden& Meliha Nalçacı: Conceptualization, Writing – review & editing. Joanna Depciuch&Jozef Cebulski&Zozan Guleken: Data curation, Investigation, Writing – review & editing and Supervision.

Corresponding authors

Correspondence to Joanna Depciuch, Jozef Cebulski or Zozan Guleken.

Ethics declarations

Conflict of Interest

The authors declare that they have no affiliations with or involvement in any organization or entity with any financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aday, A., Bayrak, A.G., Toraman, S. et al. Raman Spectroscopy of Blood Serum for Essential Thrombocythemia Diagnosis: Correlation with Genetic Mutations and Optimization of Laser Wavelengths. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01333-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01333-6

Keywords

Navigation