Skip to main content

Advertisement

Log in

Parkinson’s Disease and Diabetes Mellitus: Synergistic Effects on Pathophysiology and GI Motility

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Parkinson’s disease and diabetes affect an increasing proportion of the aging global population. Both conditions extensively affect gastrointestinal (GI) motility with similar and differing clinical symptoms. Nonetheless, GI symptoms in Parkinson’s disease and diabetes pose significant morbidity and impairment of quality of life. Their pathophysiology is poorly understood, and therefore, effective treatment options are lacking.

Recent Findings

Parkinson’s disease patients have oropharyngeal dysphagia and constipation. They also have mild or absent upper GI symptoms associated with delayed gastric emptying, which is prevalent in 70% of patients. Delayed gastric emptying in Parkinson’s disease leads to erratic medication absorption and fluctuating motor symptoms. Half of diabetics have upper GI symptoms, which correlate to gastric emptying and changes in brain activity of the insular cortex. The majority of diabetics also have constipation. Diabetics have an increased risk for developing Parkinson’s disease and anti-diabetic medications are associated with risk reduction of developing Parkinson’s disease. Hyperglycemia is associated with advanced glycated end products formation and acceleration of α-synuclein aggregation. GLP-1 receptor agonists have also demonstrated efficacy in improving motor symptoms and cognition in Parkinson’s disease patients with diabetes.

Summary

Parkinson’s disease and diabetes are pan-enteric disorders with significant GI symptoms and impairment of gut motility. Both conditions have synergistic pathophysiologies that propagate neurodegenerative changes. Treatment options for GI symptoms in diabetic and Parkinson’s disease patients are lacking. Anti-diabetic treatment improves motor symptoms in Parkinson’s disease, however, its effect on GI symptoms is unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Dorsey Ea, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384–6.

    Article  CAS  PubMed  Google Scholar 

  2. Dorsey ER, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939–53.

    Article  Google Scholar 

  3. Sharma A, et al. Constipation in Parkinson’s disease: a nuisance or nuanced answer to the pathophysiological puzzle? Curr Gastroenterol Rep. 2018;20:1–9.

    Article  PubMed  Google Scholar 

  4. Horsager J, et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain. 2020;143(10):3077–88.

    Article  PubMed  Google Scholar 

  5. Hilton D, et al. Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol. 2014;127:235–41.

    Article  CAS  PubMed  Google Scholar 

  6. Travagli RA, Browning KN, Camilleri M. Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nat Reviews Gastroenterol Hepatol. 2020;17(11):673–85.

    Article  CAS  Google Scholar 

  7. Del Tredici K, Braak H. Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathol. 2012;124:643–64.

    Article  PubMed  Google Scholar 

  8. Kleine Bardenhorst S, Cereda E, Severgnini M, et al. Gut microbiota dysbiosis in Parkinson disease: A systematic review and pooled analysis. Eur J Neurol. 2023;00:1–14. https://doi.org/10.1111/ene.15671

  9. Nishiwaki H, et al. Meta-analysis of gut dysbiosis in Parkinson’s disease. Mov Disord. 2020;35(9):1626–35.

    Article  CAS  PubMed  Google Scholar 

  10. Mawe GM, et al. 2021 workshop: neurodegenerative Diseases in the gut-brain Axis—Parkinson’s Disease. Gastroenterology. 2022;162(6):1574–82.

    Article  PubMed  Google Scholar 

  11. Okunoye O, et al. Factors associated with hospitalisation among people with Parkinson’s disease–a systematic review and meta-analysis. Parkinsonism Relat Disord. 2020;71:66–72.

  12. • Chedid V, et al. Allelic variant in the glucagon-like peptide 1 receptor gene associated with greater effect of liraglutide and exenatide on gastric emptying: a pilot pharmacogenetics study. Neurogastroenterol Motil. 2018;30(7):e13313. Defined a genetic phenotype that predicts delay in gastric emptying in response to GLP-1 receptor agonists.

  13. Cersósimo M, et al. Hyposialorrhea as an early manifestation of Parkinson disease. Auton Neurosci. 2009;150(1–2):150–1.

    Article  PubMed  Google Scholar 

  14. Dilmaghani S, et al. Severity of dysphagia is associated with hospitalizations and mortality in patients with Parkinson’s disease. Neurogastroenterol Motil. 2022;34(6):e14280.

    Article  PubMed  Google Scholar 

  15. Felix VN, Corrêa SMA, Soares RJ. A therapeutic maneuver for oropharyngeal dysphagia in patients with Parkinson’s disease. Clinics. 2008;63:661–6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Edwards L, et al. Gastrointestinal symptoms in Parkinson disease: 18-month follow‐up study. Mov disorders: official J Mov Disorder Soc. 1993;8(1):83–6.

    Article  CAS  Google Scholar 

  17. Su A, et al. Utility of high-resolution anorectal manometry and wireless motility capsule in the evaluation of patients with Parkinson’s disease and chronic constipation. BMJ Open Gastroenterol. 2016;3(1):e000118.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sharma A, et al. Diagnosis, management and patient perspectives of the spectrum of constipation disorders. Aliment Pharmacol Ther. 2021;53(12):1250–67.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zangaglia R, et al. Macrogol for the treatment of constipation in Parkinson’s disease. A randomized placebo-controlled study. Mov disorders: official J Mov Disorder Soc. 2007;22(9):1239–44.

    Article  Google Scholar 

  20. Ondo WG, et al. Placebo-controlled trial of lubiprostone for constipation associated with Parkinson disease. Neurology. 2012;78(21):1650–4.

    Article  CAS  PubMed  Google Scholar 

  21. Sharma A, et al. Dyssynergic defecation and other evacuation disorders. Gastroenterol Clin. 2022;51(1):55–69.

    Article  Google Scholar 

  22. Sharma A, et al. 353 Parkinson’s disease: an efferent brain-gut disorder with severe anorectal hyposensitivity. Gastroenterology. 2020;158(6):S-65.

    Article  Google Scholar 

  23. Rao SS, et al. Barostat or syringe-assisted sensory biofeedback training for constipation with rectal hyposensitivity: a randomized controlled trial. Neurogastroenterol Motil. 2022;33(3):e14226.

  24. Siddiqui M, et al. Autonomic dysfunction in Parkinson’s disease: a comprehensive symptom survey. Parkinsonism Relat Disord. 2002;8(4):277–84.

  25. Edwards L, et al. Gastrointestinal symptoms in Parkinson’s disease. Mov disorders: official J Mov Disorder Soc. 1991;6(2):151–6.

    Article  CAS  Google Scholar 

  26. Yan Y, et al. Mo1408: Delayed gastric emptying without gastroparesis symptoms in Parkinson’s disease: is PD a DBGI? Gastroenterology. 2022;162(7):S-761.

    Article  Google Scholar 

  27. Low V, et al. Measuring the burden and mortality of hospitalisation in Parkinson’s disease: a cross-sectional analysis of the English Hospital Episodes Statistics database 2009–2013. Parkinsonism Relat Disord. 2015;21(5):449–54.

    Article  PubMed  Google Scholar 

  28. Heetun ZS, Quigley EM. Gastroparesis and Parkinson’s disease: a systematic review. Parkinsonism Relat Disord. 2012;18(5):433–40.

    Article  PubMed  Google Scholar 

  29. Siebner TH, Fuglsang S, Madelung CF, Løkkegaard A, Bendtsen F, Hove JD, Damgaard M, Madsen JL, Siebner HR. Gastric emptying is not delayed and does not correlate with attenuated postprandial blood flow increase in medicated patients with early Parkinson's Disease. Front Neurol. 2022;13:828069. https://doi.org/10.3389/fneur.2022.828069

  30. Ricci J, et al. Upper gastrointestinal symptoms in a US national sample of adults with diabetes. Scand J Gastroenterol. 2000;35(2):152–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bharucha AE, et al. Relationship between clinical features and gastric emptying disturbances in diabetes mellitus. Clin Endocrinol. 2009;70(3):415–20.

  32. Horowitz M, et al. Gastric and oesophageal emptying in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1989;32:151–9.

    Article  CAS  PubMed  Google Scholar 

  33. Chedid V, et al. Characterization of upper gastrointestinal symptoms, gastric motor functions, and associations in patients with diabetes at a referral center. Off J Am Coll Gastroenterol ACG. 2019;114(1):143–54.

    Article  Google Scholar 

  34. Rathmann W, et al. Visceral afferent neuropathy in diabetic gastroparesis. Diabetes Care. 1991;14(11):1086–9.

    Article  CAS  PubMed  Google Scholar 

  35. Brock C, et al. Diabetic autonomic neuropathy affects symptom generation and brain-gut axis. Diabetes Care. 2013;36(11):3698–705.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang T, et al. An inter-organ neural circuit for appetite suppression. Cell. 2022;185(14):2478–94.

    Article  CAS  PubMed  Google Scholar 

  37. Karunaratne T,Yan Y, Eubanks A, Inman B, Rao S, Sharma A. Thoracic spinal nerve neuromodulation therapy for diabetic gastroparesis: a proof-of-concept study. Clin Gastroenterol Hepatol. 2022. https://doi.org/10.1016/j.cgh.2022.09.012

  38. Enck P, et al. Prevalence of gastrointestinal symptoms in diabetic patients and non-diabetic subjects. Z Gastroenterol. 1994;32(11):637–41.

    CAS  PubMed  Google Scholar 

  39. Sharma S, et al. Colorectal manifestations of endocrine disease. Dis Colon Rectum. 1995;38:318–23.

    Article  CAS  PubMed  Google Scholar 

  40. Talley NJ, et al. Impact of chronic gastrointestinal symptoms in diabetes mellitus on health-related quality of life. Am J Gastroenterol. 2001;96(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  41. Maleki D, et al. Pilot study of pathophysiology of constipation among community diabetics. Dig Dis Sci. 1998;43(11):2373–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bharucha AE, et al. A randomised controlled study of the effect of cholinesterase inhibition on colon function in patients with diabetes mellitus and constipation. Gut. 2013;62(5):708–15.

    Article  CAS  PubMed  Google Scholar 

  43. Christie J, et al. A randomized, double-blind, placebo-controlled trial to examine the effectiveness of lubiprostone on constipation symptoms and colon transit time in diabetic patients. Off J Am Coll Gastroenterol ACG. 2017;112(2):356–64.

    Article  CAS  Google Scholar 

  44. Hishida Y, et al. Effects of Elobixibat in patients with diabetes and concomitant chronic constipation: an 8-week, prospective, Single-center, single-arm study. Adv Ther. 2022;39(9):4205–17.

  45. Menees SB, et al. Prevalence of and factors associated with fecal incontinence: results from a population-based survey. Gastroenterology. 2018;154(6):1672–81.

    Article  PubMed  Google Scholar 

  46. Sharma A, Rao SS. Epidemiologic trends and diagnostic evaluation of fecal incontinence. Gastroenterol Hepatol. 2020;16(6):302.

  47. Jeong SM, et al. Body mass index, diabetes, and the risk of Parkinson’s disease. Mov Disord. 2020;35(2):236–44.

    Article  PubMed  Google Scholar 

  48. Schernhammer E, et al. Diabetes and the risk of developing Parkinson’s disease in Denmark. Diabetes Care. 2011;34(5):1102–8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Brauer R, et al. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain. 2020;143(10):3067–76. Population-based study comparing different anti-diabetic medications on risk of developing Parkinson’s disease.

  50. De Pablo-Fernandez E, et al. Association between diabetes and subsequent Parkinson disease: a record-linkage cohort study. Neurology. 2018;91(2):e139-42.

    Article  PubMed  Google Scholar 

  51. Athauda D, et al. The impact of type 2 diabetes in Parkinson’s disease. Mov Disord. 2022;37(8):1612–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kotagal V, et al. Diabetes is associated with postural instability and gait difficulty in Parkinson disease. Parkinsonism Relat Disord. 2013;19(5):522–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bohnen NI, et al. Diabetes mellitus is independently associated with more severe cognitive impairment in Parkinson disease. Parkinsonism Relat Disord. 2014;20(12):1394–8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hogg E, et al. High prevalence of undiagnosed insulin resistance in non-diabetic subjects with Parkinson’s disease. J Parkinson’s disease. 2018;8(2):259–65.

    Article  CAS  Google Scholar 

  55. Markaki I, et al. Euglycemia indicates favorable motor outcome in Parkinson’s disease. Mov Disord. 2021;36(6):1430–4.

    Article  CAS  PubMed  Google Scholar 

  56. Zittel S, et al. HbA1c and motor outcome in Parkinson’s disease in the Mark-PD study. Mov Disord. 2021;36(8):1991–2.

    Article  PubMed  Google Scholar 

  57. Huxford B, et al. Parkinson’s disease and type 2 diabetes: HbA1c is associated with motor and cognitive severity. Mov Disord. 2022;37(2):427–8.

    Article  PubMed  Google Scholar 

  58. Burré J, et al. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329(5999):1663–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. • Koenig A, Vicente H, Miranda, Outeiro TF. Alpha-synuclein glycation and the action of anti-diabetic agents in Parkinson’s disease. J Parkinson’s disease. 2018;8(1):33–43. Provides tissue evidence for acceleration of pathology in Parkinson’s patients with diabetes.

  60. Bassil F, et al. Impaired brain insulin signalling in Parkinson’s disease. Neuropathol Appl Neurobiol. 2022;48(1):e12760.

    Article  CAS  PubMed  Google Scholar 

  61. Uyar M, et al. Diabetes, glycated hemoglobin (HbA1c), and neuroaxonal damage in Parkinson’s disease (MARK-PD study). Mov Disord. 2022;37(6):1299–304.

    Article  CAS  PubMed  Google Scholar 

  62. Ong M, et al. Influence of diabetes mellitus on longitudinal atrophy and cognition in Parkinson’s disease. J Neurol Sci. 2017;377:122–6.

    Article  PubMed  Google Scholar 

  63. Petrou M, et al. Diabetes, gray matter loss, and cognition in the setting of Parkinson disease. Acad Radiol. 2016;23(5):577–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yun SP, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24(7):931–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Athauda D, Foltynie T. Insulin resistance and Parkinson’s disease: a new target for disease modification? Prog Neurobiol. 2016;145:98–120.

    Article  PubMed  Google Scholar 

  66. Aviles-Olmos I, et al. Exenatide and the treatment of patients with Parkinson’s disease. J Clin Investig. 2013;123(6):2730–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aviles-Olmos I, et al. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J Parkinson’s disease. 2014;4(3):337–44.

    Article  CAS  Google Scholar 

  68. • Athauda D, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. The Lancet. 2017;390(10103):1664–75. Randomized, placebo-controlled trial demonstrating efficacy of exenatide in Parkinson’s disease with diabetes.

  69. Athauda D, et al. What effects might exenatide have on non-motor symptoms in Parkinson’s disease: a post hoc analysis. J Parkinson’s disease. 2018;8(2):247–58.

    Article  CAS  Google Scholar 

  70. Loening-Baucke V, Read NW, Yamada T. Cerebral evoked potentials after rectal stimulation. Electroencephalogr Clin Neurophysiol/Evoked Potentials Sect. 1991;80(6):490–5.

    Article  CAS  Google Scholar 

  71. Hobday DI, et al. Cortical processing of human gut sensation: an evoked potential study. Am J Physiol-Gastrointestinal Liver Physiol. 2002;283(2):G335-9.

    Article  CAS  Google Scholar 

  72. Belafsky PC, et al. Validity and reliability of the Eating Assessment Tool (EAT-10). Ann Otol Rhinol Laryngol. 2008;117(12):919–24.

    Article  PubMed  Google Scholar 

  73. Drewes AM, et al. The “human visceral homunculus” to pain evoked in the oesophagus, stomach, duodenum and sigmoid colon. Exp Brain Res. 2006;174:443–52.

    Article  PubMed  Google Scholar 

  74. Chan Y, et al. Alterations in cerebral potentials evoked by rectal distension in irritable bowel syndrome. Am J Gastroenterol. 2001;96(8):2413–7.

    Article  CAS  PubMed  Google Scholar 

  75. Sinhamahapatra P, et al. Visceral afferent hypersensitivity in irritable bowel syndrome—evaluation by cerebral evoked potential after rectal stimulation. Am J Gastroenterol. 2001;96(7):2150–7.

    Article  CAS  PubMed  Google Scholar 

  76. Remes-Troche JM, et al. A bi-directional assessment of the human brain‐anorectal axis. Neurogastroenterol Motil. 2011;23(3):240-e118.

    Article  CAS  PubMed  Google Scholar 

  77. Gottfried-Blackmore A, et al. Open-label pilot study: non‐invasive vagal nerve stimulation improves symptoms and gastric emptying in patients with idiopathic gastroparesis. Neurogastroenterol Motil. 2020;32(4):e13769.

    Article  PubMed  Google Scholar 

  78. Rao SS, et al. Randomised clinical trial: linaclotide vs placebo—a study of bi-directional gut and brain axis. Aliment Pharmacol Ther. 2020;51(12):1332–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YY, DS, AS approved the final version of the manuscript submitted.

Corresponding author

Correspondence to Amol Sharma.

Ethics declarations

Conflict of Interest

AS served on the advisory board for Phathom Pharmaceuticals, Takeda Pharmaceuticals, Salix Pharmaceuticals, and Ironwood Pharmaceuticals. He has received research funding from Vibrant Ltd, Parkinson’s Foundation, and NIDDK.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Shimoga, D. & Sharma, A. Parkinson’s Disease and Diabetes Mellitus: Synergistic Effects on Pathophysiology and GI Motility. Curr Gastroenterol Rep 25, 106–113 (2023). https://doi.org/10.1007/s11894-023-00868-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-023-00868-7

Keywords

Navigation