Skip to main content

Advertisement

Log in

Genetic Testing for Familial Hypercholesterolemia in Clinical Practice

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Genetic testing has proven utility in identifying and diagnosing individuals with FH. Here we outline the current landscape of genetic testing for FH, recommendations for testing practices and the efforts underway to improve access, availability, and uptake.

Recent Findings

Alternatives to the traditional genetic testing and counseling paradigm for FH are being explored including expanding screening programs, testing in primary care and/or cardiology clinics, leveraging electronic communication tools like chatbots, and implementing direct contact approaches to facilitate genetic testing of both probands and at-risk relatives.

Summary

There is no consensus on if, when, and how genetic testing or accompanying genetic counseling should be provided for FH, though traditional genetic counseling and/or testing in specialty lipid clinics is often recommended in expert statements and professional guidelines. More evidence is needed to determine whether alternative approaches to the implementation of genetic testing for FH may be more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data was collected for this manuscript.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Slack J. Risks of ischaemic heart-disease in familial hyperlipoproteinaemic states. Lancet. 1969;2:1380–2.

    Article  CAS  PubMed  Google Scholar 

  2. Austin MA, Hutter CM, Zimmern RL, Humphries SE. Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol. 2004;160:407–20.

    Article  PubMed  Google Scholar 

  3. Williams KB, Horst M, Young M, et al. Clinical characterization of familial hypercholesterolemia due to an Amish founder mutation in apolipoprotein B. BMC Cardiovasc Disord. 2022;22:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Akioyamen LE, Genest J, Shan SD, Reel RL, Albaum JM, Chu A, et al. Estimating the prevalence of heterozygous familial hypercholesterolaemia: a systematic review and meta-analysis. BMJ Open. 2017;7:e016461.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abul-Husn NS, Manickam K, Jones LK, et al. Genetic identification of familial hypercholesterolemia within a single US health care system. Science. 2016. https://doi.org/10.1126/science.aaf7000.

    Article  PubMed  Google Scholar 

  6. Benn M, Watts GF, Tybjaerg-Hansen A, Nordestgaard BG. Familial hypercholesterolemia in the Danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J Clin Endocrinol Metab. 2012;97:3956–64.

    Article  CAS  PubMed  Google Scholar 

  7. Nordestgaard BG, Chapman MJ, Humphries SE, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34:3478–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nordestgaard BG, Benn M. Genetic testing for familial hypercholesterolaemia is essential in individuals with high LDL cholesterol: who does it in the world? Eur Heart J. 2017;38:1580–3.

    Article  PubMed  Google Scholar 

  9. Ahmad ZS, Andersen RL, Andersen LH, et al. US physician practices for diagnosing familial hypercholesterolemia: data from the CASCADE-FH registry. J Clin Lipidol. 2016;10:1223–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. •• Sturm AC, Knowles JW, Gidding SS, et al. Clinical genetic testing for familial hypercholesterolemia: JACC scientific expert panel. J Am Coll Cardiol. 2018;72:662–80. (This scientific statement provides comprehensive expert consensus on the utility of genetic testing for familial hypercholesterolemia in clinical practice, the rationale for genetic testing in FH, recommendations for testing, and expected outcomes from genetic testing in FH.)

    Article  PubMed  Google Scholar 

  11. Neil A, Cooper J, Betteridge J, Capps N, McDowell I, Durrington P, et al. Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. Eur Heart J. 2008;29:2625–33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Luirink IK, Wiegman A, Kusters DM, Hof MH, Groothoff JW, de Groot E, et al. 20-Year follow-up of statins in children with familial hypercholesterolemia. N Engl J Med. 2019;381:1547–56.

    Article  CAS  PubMed  Google Scholar 

  13. Versmissen J, Oosterveer DM, Yazdanpanah M, et al. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ. 2008;337:a2423.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cohen H, Stefanutti C, The Mighty Medic Satellite Research Group for Pediatric Dyslipidemia. Current approach to the diagnosis and treatment of heterozygote and homozygous FH children and adolescents. Curr Atheroscler Rep. 2021;23:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McGowan MP, Hosseini Dehkordi SH, Moriarty PM, Duell PB. Diagnosis and treatment of heterozygous familial hypercholesterolemia. J Am Heart Assoc. 2019;8:e013225.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Defesche JC, Lansberg PJ, Umans-Eckenhausen MAW, Kastelein JJP. Advanced method for the identification of patients with inherited hypercholesterolemia. Semin Vasc Med. 2004;4:59–65.

    Article  PubMed  Google Scholar 

  17. Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group. BMJ 1991;303:893–896

  18. Williams RR, Hunt SC, Schumacher MC, Hegele RA, Leppert MF, Ludwig EH, et al. Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics. Am J Cardiol. 1993;72:171–6.

    Article  CAS  PubMed  Google Scholar 

  19. Gidding SS, Champagne MA, de Ferranti SD, et al. The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation. 2015;132:2167–92.

    Article  PubMed  Google Scholar 

  20. Chan DC, Pang J, Hooper AJ, Bell DA, Bates TR, Burnett JR, et al. A comparative analysis of phenotypic predictors of mutations in familial hypercholesterolemia. J Clin Endocrinol Metab. 2018;103:1704–14.

    Article  PubMed  Google Scholar 

  21. Ibrahim S, Reeskamp LF, Stroes ESG, Watts GF. Advances, gaps and opportunities in the detection of familial hypercholesterolemia: overview of current and future screening and detection methods. Curr Opin Lipidol. 2020;31:347–55.

    Article  CAS  PubMed  Google Scholar 

  22. Brown MS, Goldstein JL. Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc Natl Acad Sci U S A. 1974;71:788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Innerarity TL, Weisgraber KH, Arnold KS, Mahley RW, Krauss RM, Vega GL, et al. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci U S A. 1987;84:6919–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abifadel M, Varret M, Rabès J-P, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.

    Article  CAS  PubMed  Google Scholar 

  25. Iacocca MA, Hegele RA. Recent advances in genetic testing for familial hypercholesterolemia. Expert Rev Mol Diagn. 2017;17:641–51.

    Article  CAS  PubMed  Google Scholar 

  26. Hendricks-Sturrup RM, Clark-LoCascio J, Lu CY. A global review on the utility of genetic testing for familial hypercholesterolemia. J Pers Med. 2020. https://doi.org/10.3390/jpm10020023.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee S, Akioyamen LE, Aljenedil S, Rivière J-B, Ruel I, Genest J. Genetic testing for familial hypercholesterolemia: impact on diagnosis, treatment and cardiovascular risk. Eur J Prev Cardiol. 2019;26:1262–70.

    Article  PubMed  Google Scholar 

  28. Bellows BK, Khera AV, Zhang Y, Ruiz-Negrón N, Stoddard HM, Wong JB, et al. Estimated yield of screening for heterozygous familial hypercholesterolemia with and without genetic testing in US adults. J Am Heart Assoc. 2022;11:e025192.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Graham CA, McIlhatton BP, Kirk CW, Beattie ED, Lyttle K, Hart P, et al. Genetic screening protocol for familial hypercholesterolemia which includes splicing defects gives an improved mutation detection rate. Atherosclerosis. 2005;182:331–40.

    Article  CAS  PubMed  Google Scholar 

  30. Taylor A, Wang D, Patel K, et al. Mutation detection rate and spectrum in familial hypercholesterolaemia patients in the UK pilot cascade project. Clin Genet. 2010;77:572–80.

    Article  CAS  PubMed  Google Scholar 

  31. Futema M, Whittall RA, Kiley A, et al. Analysis of the frequency and spectrum of mutations recognised to cause familial hypercholesterolaemia in routine clinical practice in a UK specialist hospital lipid clinic. Atherosclerosis. 2013;229:161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Civeira F, Ros E, Jarauta E, et al. Comparison of genetic versus clinical diagnosis in familial hypercholesterolemia. Am J Cardiol. 2008;102(1187–93):1193.e1.

    PubMed  Google Scholar 

  33. Garg A, Fazio S, Duell PB et al. Molecular characterization of familial hypercholesterolemia in a North American cohort. J Endocr Soc 2020;4:bvz015

  34. Vrablik M, Tichý L, Freiberger T, Blaha V, Satny M, Hubacek JA. Genetics of familial hypercholesterolemia: new insights. Front Genet. 2020;11:574474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Talmud PJ, Drenos F, Shah S, et al. Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip. Am J Hum Genet. 2009;85:628–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50:1219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Natarajan P, Peloso GM, Zekavat SM, et al. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals. Nat Commun. 2018;9:3391.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Martin AC, Hooper AJ, Norman R, et al. Pilot study of universal screening of children and child-parent cascade testing for familial hypercholesterolaemia in Australia. J Paediatr Child Health. 2022;58:281–7.

    Article  PubMed  Google Scholar 

  39. Vinson A, Guerra L, Hamilton L, Wilson DP, FNLA. Reverse cascade screening for familial hypercholesterolemia. J Pediatr Nurs. 2019;44:50–5.

    Article  PubMed  Google Scholar 

  40. Wald DS, Bestwick JP, Morris JK, Whyte K, Jenkins L, Wald NJ. Child-parent familial hypercholesterolemia screening in primary care. N Engl J Med. 2016;375:1628–37.

    Article  CAS  PubMed  Google Scholar 

  41. Jackson CL, Huschka T, Borah B, Agre K, Zordok M, Farwati M, et al. Cost-effectiveness of cascade genetic testing for familial hypercholesterolemia in the United States: a simulation analysis. Am J Prev Cardiol. 2021;8:100245.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nherera L, Marks D, Minhas R, Thorogood M, Humphries SE. Probabilistic cost-effectiveness analysis of cascade screening for familial hypercholesterolaemia using alternative diagnostic and identification strategies. Heart. 2011;97:1175–81.

    Article  CAS  PubMed  Google Scholar 

  43. Marks D, Wonderling D, Thorogood M, Lambert H, Humphries SE, Neil HA. Screening for hypercholesterolaemia versus case finding for familial hypercholesterolaemia: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2000;4:1–123.

    Article  CAS  PubMed  Google Scholar 

  44. Wonderling D, Umans-Eckenhausen MAW, Marks D, Defesche JC, Kastelein JJP, Thorogood M. Cost-effectiveness analysis of the genetic screening program for familial hypercholesterolemia in the Netherlands. Semin Vasc Med. 2004;4:97–104.

    Article  PubMed  Google Scholar 

  45. More detailed information on key tier 1 applications - familial hypercholesterolemia. 2021. https://www.cdc.gov/genomics/implementation/toolkit/fh_1.htm. Accessed 29 Jun 2022

  46. Myers KD, Knowles JW, Staszak D, et al. Precision screening for familial hypercholesterolaemia: a machine learning study applied to electronic health encounter data. Lancet Digit Health. 2019;1:e393–402.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Safarova MS, Liu H, Kullo IJ. Rapid identification of familial hypercholesterolemia from electronic health records: the SEARCH study. J Clin Lipidol. 2016;10:1230–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jones M, Akyea RK, Payne K, Humphries SE, Abdul-Hamid H, Weng S, et al. Cost-effectiveness of screening algorithms for familial hypercholesterolaemia in primary care. J Pers Med. 2022. https://doi.org/10.3390/jpm12030330.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Banda JM, Sarraju A, Abbasi F, et al. Finding missed cases of familial hypercholesterolemia in health systems using machine learning. NPJ Digit Med. 2019;2:23.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Patel P, Hu Y, Kolinovsky A, et al. Hidden burden of electronic health record-identified familial hypercholesterolemia: clinical outcomes and cost of medical care. J Am Heart Assoc. 2019;8:e011822.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Eid WE, Sapp EH, Wendt A, Lumpp A, Miller C. Improving familial hypercholesterolemia diagnosis using an EMR-based hybrid diagnostic model. J Clin Endocrinol Metab. 2022;107:1078–90.

    Article  PubMed  Google Scholar 

  52. Jones LK, Williams MS, Ladd IG, et al. Collaborative approach to reach everyone with familial hypercholesterolemia: CARE-FH protocol. J Pers Med. 2022. https://doi.org/10.3390/jpm12040606.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sheth S, Lee P, Bajaj A, et al. Implementation of a machine-learning algorithm in the electronic health record for targeted screening for familial hypercholesterolemia: a quality improvement study. Circ Cardiovasc Qual Outcomes. 2021;14:e007641.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Campbell-Salome G, Jones LK, Masnick MF, et al. Developing and optimizing innovative tools to address familial hypercholesterolemia underdiagnosis: identification methods, patient activation, and cascade testing for familial hypercholesterolemia. Circ Genom Precis Med. 2021;14:e003120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jackson CL, Keeton JZ, Eason SJ, Ahmad ZA, Ayers CR, Gore MO, et al. Identifying familial hypercholesterolemia using a blood donor screening program with more than 1 million volunteer donors. JAMA Cardiol. 2019;4:685–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bell DA, Hooper AJ, Bender R, McMahon J, Edwards G, van Bockxmeer FM, et al. Opportunistic screening for familial hypercholesterolaemia via a community laboratory. Ann Clin Biochem. 2012;49:534–7.

    Article  CAS  PubMed  Google Scholar 

  57. Alver M, Palover M, Saar A, et al. Recall by genotype and cascade screening for familial hypercholesterolemia in a population-based biobank from Estonia. Genet Med. 2019;21:1173–80.

    Article  CAS  PubMed  Google Scholar 

  58. Marquina C, Lacaze P, Tiller J, et al. Population genomic screening of young adults for familial hypercholesterolaemia: a cost-effectiveness analysis. Eur Heart J. 2021. https://doi.org/10.1093/eurheartj/ehab770.

    Article  Google Scholar 

  59. Murray MF, Giovanni MA, Doyle DL, et al. DNA-based screening and population health: a points to consider statement for programs and sponsoring organizations from the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23:989–95.

    Article  PubMed  Google Scholar 

  60. • Brown EE, Sturm AC, Cuchel M, Braun LT, Duell PB, Underberg JA, et al. Genetic testing in dyslipidemia: a scientific statement from the National Lipid Association. J Clin Lipidol. 2020;14:398–413. (This position statement from the National Lipid Association outlines the role of genetic testing in dyslipidemia including the clinical indications, genetic testing methods, laboratory reporting, and genetic counseling considerations.)

    Article  PubMed  Google Scholar 

  61. Musunuru Kiran, Hershberger Ray E., Day Sharlene M., Klinedinst N. Jennifer, Landstrom Andrew P., Parikh Victoria N., Prakash Siddharth, Semsarian Christopher, Sturm Amy C., null null. Genetic testing for inherited cardiovascular diseases: a scientific statement from the American Heart Association. Circ Genom Precis Med 2020;13:e000067

  62. Watts GF, Gidding S, Wierzbicki AS, et al. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Int J Cardiol. 2014;171:309–25.

    Article  PubMed  Google Scholar 

  63. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88.

    Article  PubMed  Google Scholar 

  64. Jellinger PS, Handelsman Y, Rosenblit PD, et al. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr Pract. 2017;23:1–87.

    Article  PubMed  Google Scholar 

  65. Brunham LR, Ruel I, Aljenedil S, et al. Canadian Cardiovascular Society position statement on familial hypercholesterolemia: update 2018. Can J Cardiol. 2018;34:1553–63.

    Article  PubMed  Google Scholar 

  66. Watts GF, Sullivan DR, Poplawski N, et al. Familial hypercholesterolaemia: a model of care for Australasia. Atheroscler Suppl. 2011;12:221–63.

    Article  PubMed  Google Scholar 

  67. Familial hypercholesterolaemia quality standard. In: National Institute for Health and Care Excellence (NICE). 2013. https://www.nice.org.uk/guidance/qs41/resources/familial-hypercholesterolaemia-pdf-2098661670853. Accessed 5 Aug 2022

  68. National Society of Genetic Counselors’ Definition Task Force, Resta R, Biesecker BB, Bennett RL, Blum S, Hahn SE, et al. A new definition of genetic counseling: National Society of Genetic Counselors’ Task Force report. J Genet Couns. 2006;15:77–83.

    Article  Google Scholar 

  69. Sturm AC. The role of genetic counselors for patients with familial hypercholesterolemia. Curr Genet Med Rep. 2014;2:68–74.

    Article  Google Scholar 

  70. Brown EE. The genetic counselor’s role in management of patients with dyslipidemia. Curr Opin Lipidol. 2021;32:83–8.

    Article  CAS  PubMed  Google Scholar 

  71. Cowan J, Morales A, Dagua J, Hershberger RE. Genetic testing and genetic counseling in cardiovascular genetic medicine: overview and preliminary recommendations. Congest Heart Fail. 2008;14:97–105.

    Article  PubMed  Google Scholar 

  72. National Society of Genetic Counselors. professional status survey: executive summary. 2022. https://www.nsgc.org/Portals/0/Executive%20Summary%20Final%2005-03-22.pdf. Accessed 24 Jun 2022

  73. Brett T, Qureshi N, Gidding S, Watts GF. Screening for familial hypercholesterolaemia in primary care: time for general practice to play its part. Atherosclerosis. 2018;277:399–406.

    Article  CAS  PubMed  Google Scholar 

  74. Sanin V, Schmieder R, Ates S, et al. Population-based screening in children for early diagnosis and treatment of familial hypercholesterolemia: design of the VRONI study. Eur J Public Health. 2022;32:422–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Qureshi N, Akyea RK, Dutton B, Humphries SE, Abdul Hamid H, Condon L, et al. Case-finding and genetic testing for familial hypercholesterolaemia in primary care. Heart. 2021;107:1956–61.

    Article  PubMed  Google Scholar 

  76. Groselj U, Kovac J, Sustar U, Mlinaric M, Fras Z, Podkrajsek KT, et al. Universal screening for familial hypercholesterolemia in children: the Slovenian model and literature review. Atherosclerosis. 2018;277:383–91.

    Article  CAS  PubMed  Google Scholar 

  77. De Backer G, Besseling J, Chapman J, et al. Prevalence and management of familial hypercholesterolaemia in coronary patients: an analysis of EUROASPIRE IV, a study of the European Society of Cardiology. Atherosclerosis. 2015;241:169–75.

    Article  PubMed  Google Scholar 

  78. Pang J, Poulter EB, Bell DA, Bates TR, Jefferson V-L, Hillis GS, et al. Frequency of familial hypercholesterolemia in patients with early-onset coronary artery disease admitted to a coronary care unit. J Clin Lipidol. 2015;9:703–8.

    Article  PubMed  Google Scholar 

  79. Samuel R, Birdsey G, Amerena J. Prevalence of familial hypercholesterolaemia in acute coronary syndrome patients in a large regional coronary care unit. Heart Lung Circ. 2021;30:730–3.

    Article  PubMed  Google Scholar 

  80. Amor-Salamanca A, Castillo S, Gonzalez-Vioque E, et al. Genetically confirmed familial hypercholesterolemia in patients with acute coronary syndrome. J Am Coll Cardiol. 2017;70:1732–40.

    Article  PubMed  Google Scholar 

  81. Wald DS, Bangash FA, Bestwick JP. Prevalence of DNA-confirmed familial hypercholesterolaemia in young patients with myocardial infarction. Eur J Intern Med. 2015;26:127–30.

    Article  CAS  PubMed  Google Scholar 

  82. Pirazzi C, Håkansson L, Gustafsson C, Omerovic E, Wiklund O, Mancina RM. High prevalence of genetic determined familial hypercholesterolemia in premature coronary artery disease. Appl Clin Genet. 2019;12:71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Murdock DR, Venner E, Muzny DM, et al. Genetic testing in ambulatory cardiology clinics reveals high rate of findings with clinical management implications. Genet Med. 2021;23:2404–14.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Descamps OS, Van Caenegem O, Hermans MP, et al. A Belgian consensus strategy to identify familial hypercholesterolaemia in the coronary care unit and its subsequent cascade screening and treatment: BEL-FaHST (The BELgium Familial Hypercholesterolaemia STrategy). Atherosclerosis. 2018;277:369–76.

    Article  CAS  PubMed  Google Scholar 

  85. Knowles JW, Rader DJ, Khoury MJ. Cascade screening for familial hypercholesterolemia and the use of genetic testing. JAMA. 2017;318:381–2.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gidding SS, Sheldon A, Neben CL, Williams HE, Law S, Zhou AY, et al. Patient acceptance of genetic testing for familial hypercholesterolemia in the CASCADE FH Registry. J Clin Lipidol. 2020;14:218-223.e2.

    Article  PubMed  Google Scholar 

  87. Neuner J, Dimmock D, Kirschner ALP, Beaudry H, Paradowski J, Orlando L. Results and lessons of a pilot study of cascade screening for familial hypercholesterolemia in US primary care practices. J Gen Intern Med. 2020;35:351–3.

    Article  PubMed  Google Scholar 

  88. • Hendricks-Sturrup RM, Mazor KM, Sturm AC, Lu CY. Barriers and facilitators to genetic testing for familial hypercholesterolemia in the United States: a review. J Pers Med. 2019. https://doi.org/10.3390/jpm9030032. (This literature review characterizes the known barriers and facilitators to genetic testing for familial hypercholesterolemia.)

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lee C, Rivera-Valerio M, Bangash H, Prokop L, Kullo IJ. New case detection by cascade testing in familial hypercholesterolemia. Circ Genom Precis Med. 2019;12:e002723.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sturm AC. Cardiovascular cascade genetic testing: exploring the role of direct contact and technology. Front Cardiovasc Med. 2016;3:11.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schwiter R, Brown E, Murray B, Kindt I, Van Enkevort E, Pollin TI, et al. Perspectives from individuals with familial hypercholesterolemia on direct contact in cascade screening. J Genet Couns. 2020;29:1142–50.

    Article  PubMed  Google Scholar 

  92. Jones LK, Walters N, Brangan A, et al. Acceptability, appropriateness, and feasibility of automated screening approaches and family communication methods for identification of familial hypercholesterolemia: stakeholder engagement results from the IMPACT-FH study. J Pers Med. 2021. https://doi.org/10.3390/jpm11060587.

    Article  PubMed  PubMed Central  Google Scholar 

  93. McGowan MP, Cuchel M, Ahmed CD, Khera A, Weintraub WS, Wilemon KA, et al. A proof-of-concept study of cascade screening for familial hypercholesterolemia in the US, adapted from the Dutch model. Am J Prev Cardiol. 2021;6:100170.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kullo IJ, Bailey KR. Design of a controlled trial of cascade screening for hypercholesterolemia: the (CASH) study. J Pers Med. 2018. https://doi.org/10.3390/jpm8030027.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bangash H, Makkawy A, Gundelach JH, Miller AA, Jacobson KA, Kullo IJ. Web-based tool (FH Family Share) to increase uptake of cascade testing for familial hypercholesterolemia: development and evaluation. JMIR Hum Factors. 2022;9:e32568.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Schmidlen T, Schwartz M, DiLoreto K, Kirchner HL, Sturm AC. Patient assessment of chatbots for the scalable delivery of genetic counseling. J Genet Couns. 2019;28:1166–77.

    Article  PubMed  Google Scholar 

  97. Schmidlen T, Jones CL, Campbell-Salome G, McCormick CZ, Vanenkevort E, Sturm AC. Use of a chatbot to increase uptake of cascade genetic testing. J Genet Couns. 2022. https://doi.org/10.1002/jgc4.1592.

    Article  PubMed  Google Scholar 

  98. Chavez-Yenter D, Kimball KE, Kohlmann W, et al. Patient interactions with an automated conversational agent delivering pretest genetics education: descriptive study. J Med Internet Res. 2021;23:e29447.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rehm HL, Berg JS, Brooks LD, et al. ClinGen—the clinical genome resource. N Engl J Med. 2015;372:2235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ormond KE, Hallquist MLG, Buchanan AH, et al. Developing a conceptual, reproducible, rubric-based approach to consent and result disclosure for genetic testing by clinicians with minimal genetics background. Genet Med. 2019;21:727–35.

    Article  CAS  PubMed  Google Scholar 

  101. Hallquist MLG, Tricou EP, Ormond KE, et al. Application of a framework to guide genetic testing communication across clinical indications. Genome Med. 2021;13:71.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Block RC, Bang M, Peterson A, Wong ND, Karalis DG. Awareness, diagnosis and treatment of heterozygous familial hypercholesterolemia (HeFH) - results of a US national survey. J Clin Lipidol. 2021;15:682–9.

    Article  PubMed  Google Scholar 

  103. Foody JM. Familial hypercholesterolemia: an under-recognized but significant concern in cardiology practice. Clin Cardiol. 2014;37:119–25.

    Article  PubMed  Google Scholar 

  104. van Langen IM, Birnie E, Leschot NJ, Bonsel GJ, Wilde AAM. Genetic knowledge and counselling skills of Dutch cardiologists: sufficient for the genomics era? Eur Heart J. 2003;24:560–6.

    Article  PubMed  Google Scholar 

  105. Mital S, Musunuru K, Garg V, et al. Enhancing literacy in cardiovascular genetics: a scientific statement from the American Heart Association. Circ Cardiovasc Genet. 2016;9:448–67.

    Article  CAS  PubMed  Google Scholar 

  106. Safarova MS, Ackerman MJ, Kullo IJ. A call for training programmes in cardiovascular genomics. Nat Rev Cardiol. 2021;18:539–40.

    Article  PubMed  Google Scholar 

  107. Samadder NJ, Riegert-Johnson D, Boardman L, et al. Comparison of universal genetic testing vs guideline-directed targeted testing for patients with hereditary cancer syndrome. JAMA Oncol. 2021;7:230–7.

    Article  PubMed  Google Scholar 

  108. Levine MD, Pearlman R, Hampel H, et al. Up-front multigene panel testing for cancer susceptibility in patients with newly diagnosed endometrial cancer: a multicenter prospective study. JCO Precis Oncol. 2021;5:1588–602.

    Article  PubMed  Google Scholar 

  109. Powell CB, Laurent C, Ciaravino G, et al. Streamlining genetic testing for women with ovarian cancer in a Northern California health care system. Gynecol Oncol. 2020. https://doi.org/10.1016/j.ygyno.2020.07.027.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Piedimonte S, Power J, Foulkes WD, et al. BRCA testing in women with high-grade serous ovarian cancer: gynecologic oncologist-initiated testing compared with genetics referral. Int J Gynecol Cancer. 2020;30:1757–61.

    Article  PubMed  Google Scholar 

  111. George A, Riddell D, Seal S, et al. Implementing rapid, robust, cost-effective, patient-centred, routine genetic testing in ovarian cancer patients. Sci Rep. 2016;6:29506.

    Article  PubMed  PubMed Central  Google Scholar 

  112. McCuaig JM, Thain E, Malcolmson J, Keshavarzi S, Armel SR, Kim RH. A comparison of patient-reported outcomes following consent for genetic testing using an oncologist- or genetic counselor-mediated model of care. Curr Oncol. 2021;28:1459–71.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Quinn VF, Meiser B, Kirk J, et al. Streamlined genetic education is effective in preparing women newly diagnosed with breast cancer for decision making about treatment-focused genetic testing: a randomized controlled noninferiority trial. Genet Med. 2017;19:448–56.

    Article  PubMed  Google Scholar 

  114. Hamilton JG, Symecko H, Spielman K, et al. Uptake and acceptability of a mainstreaming model of hereditary cancer multigene panel testing among patients with ovarian, pancreatic, and prostate cancer. Genet Med. 2021;23:2105–13.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric P. Tricou.

Ethics declarations

Conflict of Interest

Amy Sturm reports personal fees from NLA and non-financial support from NLA, outside the submitted work; and Leadership or fiduciary role in other board, society, committee or advocacy group for the following: FHF Scientific Advisory Board (unpaid), MVP-ROAR (unpaid), and NLA Genetics Working Group (unpaid). The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tricou, E.P., Morgan, K.M., Betts, M. et al. Genetic Testing for Familial Hypercholesterolemia in Clinical Practice. Curr Atheroscler Rep 25, 197–208 (2023). https://doi.org/10.1007/s11883-023-01094-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-023-01094-2

Keywords

Navigation