Skip to main content
Log in

Food-Pollen Cross-Reactivity and its Molecular Diagnosis in China

  • Review
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Plant-derived foods are one of the most common causative sources of food allergy in China, with a significant relationship to pollinosis. This review aims to provide a comprehensive overview of this food-pollen allergy syndrome and its molecular allergen diagnosis to better understand the cross-reactive basis.

Recent Findings

Food-pollen cross-reactivity has been mainly reported in Northern China, Artemisia pollen is the major related inhalant source, followed by tree pollen (Betula), while grass pollen plays a minor role. Pollen allergy is relatively low in Southern China, with allergies to grass pollen being more important than weed and tree pollens. Rosaceae fruits and legume seeds stand out as major related allergenic foods. Non-specific lipid transfer protein (nsLTP) has been found to be the most clinically relevant cross-reacting allergenic component, able to induce severe reactions. PR-10, profilin, defensin, chitinase, and gibberellin-regulated proteins are other important cross-reactive allergen molecules.

Summary

Artemisia pollen can induce allergenic cross-reactions with a wide range of plant-derived foods in China, and spring tree pollens (Betula) are also important. nsLTP found in both pollen and plant-derived food is considered the most significant allergen in food pollen cross-reactivity. Component-resolved diagnosis with potential allergenic proteins is recommended to improve diagnostic accuracy and predict the potential risk of causing allergic symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Werfel T, Asero R, Ballmer-Weber BK, et al. Position paper of the EAACI: food allergy due to immunological cross-reactions with common inhalant allergens. Allergy. 2015;70(9):1079–90.

    Article  CAS  PubMed  Google Scholar 

  2. Xu LN, Luo WT, Lu Yh, et al. A comprehensive analysis of the components of common weed pollen and related allergens in patients with allergic diseases in southern China. Mol Immunol. 2022;147:180–6.

    Article  CAS  PubMed  Google Scholar 

  3. D’Souza N, Weber M, Sarzsinszky E, et al. The molecular allergen recognition profile in China as basis for allergen specific immunotherapy. Front Immunol. 2021;12:719573.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tang R, Wang ZX, Ji CM, et al. Regional differences in food allergies. Clin Rev Allergy Immunol. 2019;57(1):98–110.

    Article  PubMed  Google Scholar 

  5. Zhang XW, Liu SY, Li X, et al. Environmental influences on food allergy. Chinese J Preventive Medicine. 2023;57(12):1921–8.

    CAS  Google Scholar 

  6. Hao G, Lai X, Song Z, et al. Self-reported questionnaire survey on the prevalence and symptoms of adverse food reactions in patients with chronic inhalant diseases in Tangshan city. China Allergy Asthma Clin Immunol. 2018;14:3.

    Article  PubMed  Google Scholar 

  7. Feng H, Liu Y, Xiong XJ, et al. Epidemiological survey of self-reported food allergy among university students in China. Medicine. 2022;101(31): e29606.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sha L, Shao MJ, Chuanhe L, et al. A cross-sectional study of the prevalence of food allergies among children younger than ages 14 years in a Beijing urban region. Allergy Asthma Proc. 2019;40(1):e1–7.

    Article  PubMed  Google Scholar 

  9. Wen Z, Ye S. A report of 50 patients with Artemisia pollinosis and plant food allergy. Nati Med J China. 2002;82:626–9.

    Google Scholar 

  10. Zhou XP, Li H. One case of anaphylaxis of chestnut and Artemisia pollinosis. Chinese J Allergy and Clin. 2011;5:148–50. https://doi.org/10.1111/all.16073.

    Article  CAS  Google Scholar 

  11. Gao ZS, Yang ZW, Wu SD, et al. Peach allergy in China: a dominant role for mugwort pollen lipid transfer protein as a primary sensitizer. J Allergy Clin Immunol. 2013;131(1):224–6.

    Article  CAS  PubMed  Google Scholar 

  12. Deng S, Yin J. Allergy to cumin: mugwort pollen-related food allergy. Allergy. 2015;70(S101):608.

    Google Scholar 

  13. Wang XY. Food Allergy: Clinical management and typical case analysis. Beijing Science and Technology Press. 2016.

  14. Deng S, Yin J. Mugwort Pollen-Related Food Allergy: Lipid transfer protein sensitization and correlation with the severity of allergic reactions in a Chinese population. Allergy Asthma Immunol Res. 2019;11(1):116–28.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang NN, Guan K, Xaing L. Clinical characteristics of self-reported food allergy in children with pollinosis. Chinese J Allergy Clin Immunol. 2020;14(06):552–9.

    Google Scholar 

  16. Tang R, Wang LL, Yin J, et al. History of hay fever in China (in Chinese). Sci Sin Vitae. 2021;51:901–7.

    Article  Google Scholar 

  17. Shi Y, Tang R, Luo FM, et al. The diagnosis and management of allergic reactions caused by Chinese materia medica. Clin Rev Allergy Immunol. 2022;62(1):103–22.

    Article  PubMed  Google Scholar 

  18. Wang XY, Chen LJ, Ding JQ, et al. Profiles of birch allergen component sensitization and its association with pollen food allergy syndrome in Northern China. J Asthma Allergy. 2023;16:1241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang NN, Xu W, Huang HJ, et al. Anaphylaxis in Chinese children with pollen sensitization: Triggers, clinical presentation, and acute management. J Asthma Allergy. 2022;15:633–43.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Luo WT. National multi-center study on allergen sensitization patterns and risk factors of allergic diseases based on the biobank resource sharing platform. 2023. PhD thesis, Guangdong Medical University.

  21. Qiao BS. Color Atlas of air-borne pollens and plants in China. Beijing: Peking Union Medical College Press; 2005.

    Google Scholar 

  22. Gao ZS. Molecular approaches to peach and Artemisia pollen allergies in China. 2021. PhD thesis, University of Amsterdam.

  23. Jiang ZH, Xiao H, Zhang HT, et al. Broussonetia papyrifera (paper mulberry) pollen is an important cause of allergic rhinitis in Southwest China. Clin Exp Allergy. 2022;52:1448–51.

    Article  PubMed  Google Scholar 

  24. Hou XQ, Hou WT, Wu LQ, et al. Associations of Four sensitization patterns revealed by Latent class analysis with clinical symptoms: A multicenter study of China. eClinicalMedicine. 2022;46:101349.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang XY, Zhang Y, Chen YL, et al. Prevalence of adult eczema, hay fever, and asthma, and associated risk factors: a population-based study in the northern Grassland of China. Allergy Asthma Clin Immunol. 2021;17(1):27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun AZ, Sun XL, Li XY, et al. Sensitization characteristics in allergic rhinitis and transport pathway for Artemisia pollen in northern Beijing. China Sci Total Environ. 2023;884: 163795.

    Article  CAS  PubMed  Google Scholar 

  27. Li JD, Gu JQ, Xu YY, et al. Serum IgE profiles in Chinese pollinosis patients with grass pollen sensitization. World Allergy Organ J. 2022;15(1):100624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang W, Zhao Y, Wang CS, et al. Food allergen sensitization in patients with allergic rhinitis. J Capital Medical University. 2011;32(1):8–12.

    CAS  Google Scholar 

  29. Aalberse RC, Akkerdaas J, van Ree R. Cross-reactivity of IgE antibodies to allergens. Allergy. 2001;56(6):478–90.

    Article  CAS  PubMed  Google Scholar 

  30. Guryanova SV, Finkina EI, Melnikova DN, et al. How do pollen allergens sensitize? Front Mol Biosci. 2022;9: 900533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gilissen L, Gao ZS, Chen Z. Allergen protein families and cross-reactivity, in “Multidisciplinary Approaches to Allergies” edited by Gao ZS, Shen HH, Zheng M, Frewer L and Gilissen L, Zhejiang University Press and Springer, 2012, Hangzhou China. 81–90.

  32. Gao ZS, Zhou X, Yang ZW, et al. IgE-binding potencies of three peach Pru p 1 isoforms. Mol Nutr Food Res. 2016;60:2457–66.

    Article  CAS  PubMed  Google Scholar 

  33. Hao GD, Zheng YW, Wang ZX, et al. High correlation of specific IgE sensitization between birch pollen, soy and apple allergens indicates pollen-food allergy syndrome among birch pollen allergic patients in northern China. J Zhejiang Univ-Sci B (Biomed & Biotechnol). 2016;17(5):399–404.

    Article  CAS  Google Scholar 

  34. Zhao L, Xie HB, Wang XF, et al. Molecular characterization of allergens and component-resolved diagnosis of IgE-mediated mango fruit allergy. Allergy. 2023;78(6):1699–703.

    Article  CAS  PubMed  Google Scholar 

  35. van Ree R, Ballerda BD, Berin MC, et al. The COMPARE database: A public resource for allergen identification, adapted for continuous improvement. Front Allergy. 2021;2: 700533.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jiang NN, Yin J, Wen LP, et al. Characteristics of anaphylaxis in 907 Chinese patients referred to a tertiary allergy center: A retrospective study of 1,952 episodes. Allergy Asthma Immunol Res. 2016;8(4):353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li SK, Liu ZY, Huang CK, et al. Prevalence, clinical presentation, and associated atopic diseases of pediatric fruit and vegetable allergy: A population-based study. Pediatr Neonatol. 2022;63(5):520–6.

    Article  PubMed  Google Scholar 

  38. Feng H, Zhou JD, Lu YA, et al. Prevalence of self-reported food allergy among adults in Jiangxi, China. World Allergy Organ J. 2023;16(5): 100773.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Feng H, Luo N, Xiong XJ, et al. Prevalence of food allergy in the Chinese population: A systematic review and meta-analysis of population-based studies. Allergy Asthma Proc. 2023;44(5):315–25.

    Article  PubMed  Google Scholar 

  40. Huang Z, Feng W, Wei W, et al. Prevalence of food-allergen and aeroallergen sensitization among people in Sichuan, western China: An 8-year observational study. J Vlin Lab Anal. 2019;33(3): e22723.

    Article  Google Scholar 

  41. Hu H, Huang H, Liao C, et al. A study of allergen detection panel in Guangzhou, southern China based on real-world data from the past 7 years. Sci Rep. 2023;13(1):14855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li JD, Du ZR, Liu J, et al. Characteristics of pollen-related food allergy based on individual pollen allergy profiles in the Chinese population. World Allergy Organ J. 2020;13(5): 100120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun Y, Yu XL. Clinic analysis of plant food allergies in 22 pollinosis patients. Inner Mongolia Med J. 2007;39(9):1121–2.

    Google Scholar 

  44. Ma SK, Yin J, Jiang NN, et al. Component-resolved diagnosis of peach allergy and its relationship with prevalent allergenic pollens in China. J Allergy Clin Immunol. 2013;132(3):764–7.

    Article  PubMed  Google Scholar 

  45. Guan K, Hao CL, Liu ZF, et al. Expert consensus on the diagnosis and management of pollen-food allergy syndrome. Chin J Prev Med. 2024;58(6):1–16.

    Google Scholar 

  46. Zhao L, Fu WY, Gao BY, et al. Variation in IgE binding potencies of seven Artemisia species depending on content of major allergens. Clin Transl Allergy. 2020;10(1):50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fu WY, Gao ZS, Gao L, et al. Identification of a 62-kDa major allergen from Artemisia pollen as a putative galactose oxidase. Allergy. 2018;73(5):1041–52.

    Article  CAS  PubMed  Google Scholar 

  48. Gao ZS, Fu WY, Sun YM, et al. Artemisia pollen allergy in China: Component-resolved diagnosis reveals allergic asthma patients have significant multiple allergen sensitization. Allergy. 2019;74(2):284–93.

    Article  CAS  PubMed  Google Scholar 

  49. Rial MJ, Sastre L. Food allergies caused by allergenic lipid transfer proteins: What is behind the geographic restriction? Curr Allergy Asthma Rep. 2018;18(11):56.

    Article  CAS  PubMed  Google Scholar 

  50. Di Y, Yu RL, Du H, et al. Observation on pollinosis with plant food allergy. J Clin Otorrhinolaryngol Head Neck Surg (China). 2018;32(23):1779–83.

    CAS  Google Scholar 

  51. Zhao L. Identification of allergens in mango and red bayberry fruits and relation to Artemisia pollen allergy. 2022. PhD thesis, Zhejiang University.

  52. Kong R, Yin J. Kidney-bean (Phaseolus Vulgaris) Dependent, exercise-induced anaphylaxis in patients comorbid with mugwort (Artemisia Vulgaris) Pollinosis. Immunol Invest. 2020;50(4):389–98.

    Article  PubMed  Google Scholar 

  53. Tang R, Sun JL, Yin J, et al. Artemisia allergy research in China. Biomed Res Int. 2015;2015: 179426.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Song L, Wu J, Xi AQ. Clinical analysis of 28 pollenosis cases induced by TCM preparation. China Pharm. 2007;18(12):937–8.

    Google Scholar 

  55. Sun ZB, Zhao YX, An XQ, et al. Effects of airborne pollen on allergic rhinitis and asthma across different age groups in Beijing. China Sci Total Environ. 2024;912: 169215.

    Article  Google Scholar 

  56. Lou H, Ma S, Zhao Y, et al. Sensitization patterns and minimum screening panels for aeroallergens in self-reported allergic rhinitis in China. Sci Rep. 2017;7(1):9286.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Song JJ, Zhang HY, Liu ZG, et al. Cloning of the panallergen profilin from lychee fruit and its cross-reactivity with birch pollen profilin Bet v 2. Food Agric Immunol. 2007;18(2):129–38.

    Article  CAS  Google Scholar 

  58. Xie SQ, Gao Y, Gong LZ. Clinical analysis of Alnus nepalensis pollen allergy. Medicine and Pharmacy of Yunnan. 2006;03:276.

    Google Scholar 

  59. Wang J. Research on pollen allergen component and its cross-reaction with fruit and vegetable proteins in Kunming. 2022. PhD thesis, Kunming Medical University.

  60. Luo WT, Yang SW, Huang HM, et al. Analysis of peanut allergen components sensitization and cross reaction with pollen allergen in Chinese Southerners with allergic rhinitis and/or asthma. J Asthma Allergy. 2021;14:1285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Luo WT, Huang HM, Zheng PY, et al. Major grass pollen allergens and components detected in a southern Chinese cohort of patients with allergic rhinitis and/or asthma. Mol Immunol. 2016;78:105–12.

    Article  CAS  PubMed  Google Scholar 

  62. Shahali Y, Dadar M. Plant food allergy: Influence of chemicals on plant allergens. Food Chem Toxicol. 2018;115:365–74.

    Article  CAS  PubMed  Google Scholar 

  63. Heiss S, Mahler V, Steiner R, et al. Component-resolved diagnosis (CRD) of type I allergy with recombinant grass and tree pollen allergens by skin testing. J Invest Dermatol. 1999;113(5):830–7.

    Article  CAS  PubMed  Google Scholar 

  64. Andersen MBS, Hall S, Dragsted LO. Identification of European allergy patterns to the allergen families PR-10, LTP, and profilin from Rosaceae fruits. Clin Rev Allergy Immunol. 2011;41(1):4–19.

    Article  CAS  PubMed  Google Scholar 

  65. Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, et al. EAACI Molecular Allergology User’s Guide. Pediatr Allergy Immunol. 2016;27(S23):1–250.

    Article  PubMed  Google Scholar 

  66. Burney PG, Potts J, Kummeling I, et al. The prevalence and distribution of food sensitization in European adults. Allergy. 2014;69(3):365–71.

    Article  CAS  PubMed  Google Scholar 

  67. Kader JC. Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Molec Biol. 1996;47:627–54.

    Article  CAS  Google Scholar 

  68. Salcedo G, Sanchez-Monge R, Diaz-Perales A, et al. Plant non-specific lipid transfer proteins as food and pollen allergens. Clin Exp Allergy. 2004;34(9):1336–41.

    Article  CAS  PubMed  Google Scholar 

  69. van Ree R. Clinical importance of non-specific lipid transfer proteins as food allergens. Biochem Soc Trans. 2002;30:910–3.

    Article  PubMed  Google Scholar 

  70. Radauer C, Bublin M, Wagner S, et al. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121(4):847–52.

    Article  CAS  PubMed  Google Scholar 

  71. Jiang NN, Xiang L, Guan H, et al. Blueberry (Vaccinium myrtillus) Induced Anaphylaxis in a Chinese child with lipid transfer protein sensitization. J Asthma Allergy. 2023;16:1253–8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wangorsch A, Schülke S, Gadermaier G, et al. LTP cross-reactivity-primary sensitization to mugwort pollen LTP Art v 3, facilitates subsequent sensitisation to peach LTP Pru p 3 in mice. Clin Transl Allergy. 2014;4:014.

    Article  Google Scholar 

  73. Pastorello EA, Monza M, Pravettoni V, et al. Characterization of the T-cell epitopes of the major peach allergen Pru p 3. Int Arch Allergy Immunol. 2010;153(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  74. Deng S, Yin J, Wang RQ. Identification of T-cell epitopes of major peach allergen Pru p 3. Chin J Allergy Clin Immunol. 2018;12(5):498–502.

    Google Scholar 

  75. Garcia-Casado G, Pacios LF, Diaz-Perales A, et al. Identification of IgE-binding epitopes of the major peach allergen Pru p 3. J Allergy Clin Immunol. 2003;112(3):599–605.

    Article  CAS  PubMed  Google Scholar 

  76. Pacios LF, Tordesillas L, Cuesta-Herranz J, et al. Mimotope mapping as a complementary strategy to define allergen IgE-epitopes: Peach Pru p 3 allergen as a model. Mol Immunol. 2008;45(8):2269–76.

    Article  CAS  PubMed  Google Scholar 

  77. Muzio MD, Wildner S, Huber S, et al. Hydrogen/deuterium exchange memory NMR reveals structural epitopes involved in IgE cross-reactivity of allergenic lipid transfer proteins. J Biol Chem. 2020;295(51):17398–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. D’Amato G, Cecchi L, Bonini S, et al. Allergenic pollen and pollen allergy in Europe. Allergy. 2007;62(9):976–90.

    Article  PubMed  Google Scholar 

  79. Katial RK, Lin FL, Stafford WW, et al. Mugwort and sage (Artemisia) pollen cross-reactivity: ELISA inhibition and immunoblot evaluation. Ann Allergy Asthma Immmunol. 1997;79(4):340–6.

    Article  CAS  Google Scholar 

  80. Riggins CW, Seigler DS. The genus Artemisia (Asteraceae: Anthemideae) at a continental crossroads: Molecular insights into migrations, disjunctions, and reticulations among Old and NewWorld species from a Beringian perspective. Mol Phylogenet Evol. 2012;64(3):471–90.

    Article  PubMed  Google Scholar 

  81. Scheurer S, Van Ree R, Vieths S. The role of lipid transfer proteins as food and pollen allergens outside the Mediterranean area. Curr Allergy Asthma Rep. 2021;21(2):7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sánchez-López J, Tordesillas L, Pascal M, et al. Role of Art v 3 in pollinosis of patients allergic to Pru p 3. J Allergy Clin Immunol. 2014;133(4):1018–25.

    Article  PubMed  Google Scholar 

  83. Ruano-Zaragoza M, Somoza ML, Jimenez-Rodriguez TW, et al. Lipid transfer protein sensitization: risk of anaphylaxis and molecular sensitization profile in Pru p 3-sensitized patients. Int Arch Allergy Immunol. 2020;182(5):425���32.

    Article  PubMed  Google Scholar 

  84. Ma S, Nie L, Li H, et al. Component-Resolved Diagnosis of peanut allergy and its possible origins of sensitization in China. Int Arch Allergy Immunol. 2016;169(4):241–8.

    Article  CAS  PubMed  Google Scholar 

  85. Breiteneder H, Radauer C. A classification of plant food allergens. J Allergy Clin Immunol. 2004;113(5):821–30.

    Article  CAS  PubMed  Google Scholar 

  86. Rodriguez del Rio P, Diaz-Perales A, Sanchez-Garcia S. Profilin, a Change in the Paradigm. J Invest Allergol Clin Immunol. 2018;28(1):1–12.

    Article  CAS  Google Scholar 

  87. Lopez-Torrejon G, Ibanez MD, Ahrazem O, et al. Isolation, cloning and allergenic reactivity of natural profilin Cit s 2, a major orange allergen. Allergy. 2005;60(11):1424–9.

    Article  CAS  PubMed  Google Scholar 

  88. Lopez-Torrejon G, Crespo JF, Sanchez-Monge R, et al. Allergenic reactivity of the melon profilin Cuc m 2 and its identification as major allergen. Clin Exp Allergy. 2005;35(8):1065–72.

    Article  CAS  PubMed  Google Scholar 

  89. Yang YS, Xu ZQ, Zhu W, et al. Molecular and immunochemical characterization of profilin as major allergen from Platanus acerifolia pollen. Int Immunopharmaco. 2022;106: 108601.

    Article  CAS  Google Scholar 

  90. Liao CX, Hou XQ, Wu LT, et al. Major Grass Pollen Allergen components and cross-reactive carbohydrate determinants in mugwort-sensitized child patients with allergic respiratory disease in Western China. Front Pediatr. 2022;10: 816354.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wu LQ, Hou XQ, Luo WT, et al. Three patterns of sensitization to mugwort, timothy, birch and their major allergen components revealed by Latent class analysis. Mol Immunol. 2022;145:59–66.

    Article  CAS  PubMed  Google Scholar 

  92. Khan RS, Iqbal A, Malak R, et al. Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech. 2019;9(5):192.

    Article  Google Scholar 

  93. Zhao L, Chen JY, Wang YQ, et al. Association in molecular profiles of IgE sensitization to mugwort pollen allergens in Chinese parents and their offspring. Pediatr Allergy Immunol. 2023;34(8): e14005.

    Article  PubMed  Google Scholar 

  94. Cosi V, Gadermaier G. The Role of Defensins as Pollen and Food Allergens. Curr Allergy Asthma Rep. 2023;23(6):277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ukleja-Sokołowska N, Lis K, Graczyk M, et al. The use of inhibition assay in Api g 7 suspected allergy in a female patient with anaphylaxis: A case report. Int J Immunopathol Pharmacol. 2024;38:03946320231223004.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ukleja-Sokolowska N, Gawronska-Ukleja E, Lis K, et al. Anaphylactic reaction in patient allergic to mango. Allergy Asthma Clin Immunol. 2018;14:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ukleja-Sokolowska N, Gawronska-Ukleja E, Zbikowska-Gotz M, et al. Sunflower seed allergy. International J Immunopathol Pharmacol. 2016;29(3):498–503.

    Article  Google Scholar 

  98. Petersen A, Kull S, Rennert S, et al. Peanut defensins: novel allergens isolated from lipophilic peanut extract. J Allergy Clin Immunol. 2015;136(5):1295–301.

    Article  CAS  PubMed  Google Scholar 

  99. Tuppo L, Alessandri C, Pomponi D, et al. Peamaclein - a new peach allergenic protein: similarities, differences and misleading features compared to Pru p 3. Clin Exp Allergy. 2013;43(1):128–40.

    Article  CAS  PubMed  Google Scholar 

  100. Klingebiel C, Chantran Y, Arif-Lusson R, et al. Pru p 7 sensitization is a predominant cause of severe, cypress pollen-associated peach allergy. Clin Exp Allergy. 2019;49(4):526–36.

    Article  CAS  PubMed  Google Scholar 

  101. Iizuka T, Takei M, Saito Y, et al. Gibberellin-regulated protein sensitization in Japanese cedar (Cryptomeria japonica) pollen allergic Japanese cohorts. Allergy. 2021;76(7):2297–302.

    Article  CAS  PubMed  Google Scholar 

  102. Grijincu M, Hutu I, Weber M, et al. Physicochemical and immunological characterization of Amb a 12, a novel ragweed (Ambrosia artemisiifolia) pollen allergen. Mol Immunol. 2023;157:18–29.

    Article  CAS  PubMed  Google Scholar 

  103. Jiao YX, Song LB, Xu ZQ, et al. Purification and characterization of enolase as a novel allergen in Platanus acerifolia pollen. Int Immunopharmacol. 2022;113: 109313.

    Article  CAS  PubMed  Google Scholar 

  104. Luo WT, Huang HM, Zheng PY, et al. CCD Inhibition test can improve the accuracy of the detection of pollen and seed food allergen-specific IgE in Southern China. J Asthma Allergy. 2021;14:439–47.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chen H, Jiang Q, Yang YQ, et al. Cross-reacting carbohydrate determinants inhibitor can improve the diagnostic accuracy in pollen and food allergy. J Asthma Allergy. 2022;15:713–25.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Valenta R, Karaulov A, Niederberger V, et al. Molecular Aspects of Allergens and Allergy. Adv Immunol. 2018;138:195–256.

    Article  CAS  PubMed  Google Scholar 

  107. Chen H, Li J, Cheng L, et al. China consensus document on allergy diagnostics. Asthma Allergy Immunol Res. 2021;13(2): e25.

    Article  Google Scholar 

  108. Lupinek C, Wollmann E, Baar A, et al. Advances in allergen-microarray technology for diagnosis and monitoring of allergy: the MeDALL allergen-chip. Methods. 2014;66(1):106–19.

    Article  CAS  PubMed  Google Scholar 

  109. Deng S, Yin J. Clinical utility of basophil activation test in diagnosis and predicting severity of mugwort pollen-related peach allergy. World Allergy Organ J. 2019;12(6): 100043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tang LX, Wang PP, Ge WT, et al. Artemisia annua sublingual immunotherapy in children with seasonal allergic rhinitis. Allergy. 2024.

  111. Lou HF, Wang XY, Wei QY, et al. Artemisia Annua sublingual immunotherapy for seasonal allergic rhinitis: A multicenter, randomized trial. World Allergy Organ J. 2020;13(9): 100458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shen Z, Zhang PF, Kang W, et al. Clinical efficacy in one-year treatment with Artemisia annua-SLIT drops in monosensitized and polysensitized individuals. Am J Otolaryngol. 2023;44(6): 104002.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was carried out with financial support from the National Natural Science Foundation of China (32302482), Talent Cultivation Project of Beijing Shijitan Hospital, Capital Medical University during the “14th Five Year Plan” Period (Leading Talents) (2023LJRCWXY), and Science and Technology Plan “Open list” project of Ordos City (JBGS-2021–006).

Author information

Authors and Affiliations

Authors

Contributions

L.Z. , T.M., X. W. and Z.G. wrote the main manuscript text. L.Z., Y. L. and S.W. prepared figures 1-2, XiaoY. W. and H.W. prepared figure 3., L.Z. , T.M., XiaoY. W., L.F. and Z.G. prepared Table 1. L. G, R. van R. revised the manuscript. X.W.and Z. G. supervised the study. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Xueyan Wang or Zhongshan Gao.

Ethics declarations

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Ma, T., Wang, X. et al. Food-Pollen Cross-Reactivity and its Molecular Diagnosis in China. Curr Allergy Asthma Rep (2024). https://doi.org/10.1007/s11882-024-01162-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11882-024-01162-w

Keywords

Navigation