Skip to main content
Log in

Research Progress on Gas Generation from Waste Plastics Through Pyrolysis

  • Review Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Plastic pyrolysis technology, as an efficient and stable path for chemical recycling of waste plastics, alleviates current energy pressures and solves the problem of continuous accumulation of waste plastics in the environment. At present, the vast majority of research on plastic pyrolysis is focused on how to improve the yield and quality of liquid fuels, while there is generally little research on the gases generated by plastic pyrolysis. However, gases such as H2, CH4, and light hydrocarbons generated during pyrolysis also have high utilization value, and have very considerable application prospects in chemical, aerospace, and metallurgical fields. In addition, compared with the separation difficulties of liquid products, the treatment of gas products is easier and more conducive to subsequent utilization. This article discusses and analyzes the yield and composition of gases generated by plastic in three different pyrolysis methods: direct pyrolysis, catalytic pyrolysis, and microwave pyrolysis. Compared to traditional direct pyrolysis, catalytic pyrolysis and microwave pyrolysis can treat plastic waste more efficiently and energy-efficient, and have higher gas yields. This article also discusses various factors such as temperature that influence the formation of gas products and their importance. Finally, the challenges faced are proposed, aiming to provide reference and direction for future research on improving the yield of gas generated by plastic pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. G. Lopez, M. Artetxe, M. Amutio, J. Bilbao, M. Olazar, Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 73, 346–368 (2017)

    Article  CAS  Google Scholar 

  2. S. Kartik, H.K. Balsora, M. Sharma, A. Saptoro, R.K. Jain, J.B. Joshi et al., Valorization of plastic wastes for production of fuels and value-added chemicals through pyrolysis—a review. Thermal Sci. Eng. Progress 32, 101316 (2022)

    Article  CAS  Google Scholar 

  3. M.M. Ismail, I. Dincer, A new renewable energy based integrated gasification system for hydrogen production from plastic wastes. Energy 270, 126869 (2023)

    Article  CAS  Google Scholar 

  4. D.S. Achilias, C. Roupakias, P. Megalokonomos, A.A. Lappas, E.V. Antonakou, Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J. Hazard. Mater. 149, 536–542 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. G. Celik, R.M. Kennedy, R.A. Hackler, M. Ferrandon, A. Tennakoon, S. Patnaik et al., Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 5, 1795–1803 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D.C. Ashworth, P. Elliott, M.B. Toledano, Waste incineration and adverse birth and neonatal outcomes: a systematic review. Environ. Int. 69, 120–132 (2014)

    Article  PubMed  Google Scholar 

  7. D.-D. Yao, C.-H. Wang, Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts. Appl. Energy 265, 114819 (2020)

    Article  CAS  Google Scholar 

  8. M. Franchini, M. Rial, E. Buiatti, F. Bianchi, Health effects of exposure to waste incinerator emissions: a review of epidemiological studies. Annali dell’Istituto Superiore di Sanita 40, 101–115 (2005)

    Google Scholar 

  9. N. Yang, H. Zhang, M. Chen, L.-M. Shao, P.-J. He, Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery. Waste Manage. 32, 2552–2560 (2012)

    Article  CAS  Google Scholar 

  10. E.L. Teuten, J.M. Saquing, D.R.U. Knappe, M.A. Barlaz, S. Jonsson, A. Bjorn et al., Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B: Biol. Sci. 364, 2027–2045 (2009)

    Article  CAS  Google Scholar 

  11. J.-P. Lange, Managing plastic waste─sorting, recycling, disposal, and product redesign. ACS Sustai. Chem. Eng. 9, 15722–15738 (2021)

    Article  CAS  Google Scholar 

  12. K. Ragaert, L. Delva, K. Van Geem, Mechanical and chemical recycling of solid plastic waste. Waste Manage. 69, 24–58 (2017)

    Article  CAS  Google Scholar 

  13. R.K. Singh, B. Ruj, A.K. Sadhukhan, P. Gupta, Conventional pyrolysis of plastic waste for product recovery and utilization of pyrolytic gases for carbon nanotubes production. Environ. Sci. Pollut. Res. 29, 20007–20016 (2022)

    Article  CAS  Google Scholar 

  14. K.K. Jha, T.T.M. Kannan, Alternate fuel preparation in low cost from waste plastic: a review. Mater. Today: Proc. 37, 3656–3657 (2021)

    Google Scholar 

  15. S.D. Anuar Sharuddin, F. Abnisa, W.M.A. Wan Daud, M.K. Aroua, A review on pyrolysis of plastic wastes. Energy Convers. Manage. 115, 308–326 (2016)

    Article  CAS  Google Scholar 

  16. B. Kunwar, H.N. Cheng, S.R. Chandrashekaran, B.K. Sharma, Plastics to fuel: a review. Renew. Sustain. Energy Rev. 54, 421–428 (2016)

    Article  CAS  Google Scholar 

  17. S.L. Wong, N. Ngadi, T.A.T. Abdullah, Current state and future prospects of plastic waste as source of fuel: a review. Renew. Sustain. Energy Rev. 50, 1167–1180 (2015)

    Article  CAS  Google Scholar 

  18. X.Q. Jia, C. Qin, T. Friedberger, Z.B. Guan, Z. Huang, Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci. Adv. 2, e1501591 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  19. TPE magazine international Group, Plastics - the Facts 2017. An analysis of European plastics production, demand and waste data. TPE Mag. Int. 9, 93 (2018)

    Google Scholar 

  20. AIE. The future of petrochemicals: Towards more sustainable plastics and fertilisers. International Energy Agency 2018.

  21. R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  22. F.M. Tsai, T.D. Bui, M.L. Tseng, M.K. Lim, J.Y. Hu, Municipal solid waste management in a circular economy: a data-driven bibliometric analysis. J. Clean. Prod. 275, 124132 (2020)

    Article  Google Scholar 

  23. M.A. Charitopoulou, K.G. Kalogiannis, A.A. Lappas, D.S. Achilias, Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants. Environ. Sci. Pollut. Res. Int. 28, 59190–59213 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. A. Ramos, A. Rouboa, Renewable energy from solid waste: life cycle analysis and social welfare. Environ. Impact Assess. Rev. 85, 106469 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  25. J.A. Onwudili, N. Insura, P.T. Williams, Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: effects of temperature and residence time. J. Anal. Appl. Pyrol. 86, 293–303 (2009)

    Article  CAS  Google Scholar 

  26. X.H. Zhao, M. Korey, K. Li, K. Copenhaver, H. Tekinalp, S. Celik et al., Plastic waste upcycling toward a circular economy. Chem. Eng. J. 428, 131928 (2022)

    Article  CAS  Google Scholar 

  27. X. Hu, H.Y. Guo, M. Gholizadeh, B. Sattari, Q. Liu, Pyrolysis of different wood species: Impacts of C/H ratio in feedstock on distribution of pyrolysis products. Biomass Bioenerg. 120, 28–39 (2019)

    Article  CAS  Google Scholar 

  28. P.H.M. Putra, S. Rozali, M.F.A. Patah, A. Idris, A review of microwave pyrolysis as a sustainable plastic waste management technique. J. Environ. Manage. 303, 114240 (2022)

    Article  CAS  PubMed  Google Scholar 

  29. A. Marcilla, M.I. Beltran, R. Navarro, Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions. Appl. Catal. B 86, 78–86 (2009)

    Article  CAS  Google Scholar 

  30. M. Artetxe, G. Lopez, M. Amutio, I. Barbarias, A. Arregi, R. Aguado et al., Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor. Waste Manage. 45, 126–133 (2015)

    Article  CAS  Google Scholar 

  31. B.S. Kang, S.G. Kim, J.S. Kim, Thermal degradation of poly(methyl methacrylate) polymers: kinetics and recovery of monomers using a fluidized bed reactor. J. Anal. Appl. Pyrol. 81, 7–13 (2008)

    Article  CAS  Google Scholar 

  32. Y. Mo, L. Zhao, Z.H. Wang, C.L. Chen, G.Y.A. Tan, J.Y. Wang, Enhanced styrene recovery from waste polystyrene pyrolysis using response surface methodology coupled with Box-Behnken design. Waste Manage. 34, 763–769 (2014)

    Article  CAS  Google Scholar 

  33. F. Obeid, J. Zeaiter, A.H. Al-Muhtaseb, K. Bouhadir, Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts. Energy Convers. Manage. 85, 1–6 (2014)

    Article  CAS  Google Scholar 

  34. W.C. Huang, M.S. Huang, C.F. Huang, C.C. Chen, K.L. Ou, Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts. Fuel 89, 2305–2316 (2010)

    Article  CAS  Google Scholar 

  35. J. Zeaiter, A process study on the pyrolysis of waste polyethylene. Fuel 133, 276–282 (2014)

    Article  CAS  Google Scholar 

  36. Q. Zhou, L. Zheng, Y.Z. Wang, G.M. Zhao, B. Wang, Catalytic degradation of low-density polyethylene and polypropylene using modified ZSM-5 zeolites. Polym. Degrad. Stab. 84, 493–497 (2004)

    Article  CAS  Google Scholar 

  37. M.R. Hernandez, A.N. Garcia, A. Marcilla, Catalytic flash pyrolysis of HDPE in a fluidized bed reactor for recovery of fuel-like hydrocarbons. J. Anal. Appl. Pyrol. 78, 272–281 (2007)

    Article  Google Scholar 

  38. S.H. Jung, M.H. Cho, B.S. Kang, J.S. Kim, Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Process. Technol. 91, 277–284 (2010)

    Article  CAS  Google Scholar 

  39. P.T. Williams, E.A. Williams, Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock. J. Anal. Appl. Pyrol. 51, 107–126 (1999)

    Article  CAS  Google Scholar 

  40. M.H. Cho, S.H. Jung, J.S. Kim, Pyrolysis of mixed plastic wastes for the recovery of benzene, toluene, and xylene (BTX) aromatics in a fluidized bed and chlorine removal by applying various additives. Energy Fuels 24, 1389–1395 (2010)

    Article  CAS  Google Scholar 

  41. S.V. Papuga, P.M. Gvero, L.M. Vukic, Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor. Therm. Sci. 20, 731–741 (2016)

    Article  Google Scholar 

  42. H. Zhou, C.F. Wu, J.A. Onwudili, A.H. Meng, Y.G. Zhang, P.T. Williams, Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Manage. 36, 136–146 (2015)

    Article  Google Scholar 

  43. G. Grause, S. Matsumoto, T. Kameda, T. Yoshioka, Pyrolysis of mixed plastics in a fluidized bed of hard burnt lime. Ind. Eng. Chem. Res. 50, 5459–5466 (2011)

    Article  CAS  Google Scholar 

  44. Ghosh P, Sengupta S, Singh L, Sahay A. Life cycle assessment of waste-to-bioenergy processes: a review. Bioreactors 2020; 105–122.

  45. D. Almeida, M.D. Marques, Thermal and catalytic pyrolysis of plastic waste. Polimeros-Ciencia e Tecnologia 26, 44–51 (2015)

    Article  Google Scholar 

  46. G. Elordi, M. Olazar, G. Lopez, M. Artetxe, J. Bilbao, Product yields and compositions in the continuous pyrolysis of high-density polyethylene in a conical spouted bed reactor. Ind. Eng. Chem. Res. 50, 6650–6659 (2011)

    Article  CAS  Google Scholar 

  47. C.M. Simon, W. Kaminsky, Chemical recycling of polytetrafluoroethylene by pyrolysis. Polym. Degrad. Stab. 62, 1–7 (1998)

    Article  CAS  Google Scholar 

  48. C. Berrueco, F.J. Mastral, E. Esperanza, J. Ceamanos, Production of waxes and tars from the continuous pyrolysis of high density polyethylene. Influence of operation variables. Energy Fuels 16, 1148–1153 (2002)

    Article  CAS  Google Scholar 

  49. J.F. Mastral, C. Berrueco, J. Ceamanos, Pyrolysis of high-density polyethylene in free-fall reactors in series. Energy Fuels 20, 1365–1371 (2007)

    Article  Google Scholar 

  50. M. Rehan, A.S. Nizami, O. Taylan, B.O. Al-Sasi, A. Demirbas, Determination of wax content in crude oil. Pet. Sci. Technol. 34, 799–804 (2016)

    Article  CAS  Google Scholar 

  51. Y.H. Lin, H.Y. Yen, Fluidised bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons. Polym. Degrad. Stab. 89, 101–108 (2005)

    Article  CAS  Google Scholar 

  52. X.S. Zhang, H.W. Lei, G. Yadavalli, L. Zhu, Y. Wei, Y.P. Liu, Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5. Fuel 144, 33–42 (2015)

    Article  Google Scholar 

  53. P. Senthil Kumar, M. Bharathikumar, C. Prabhakaran, S. Vijayan, K. Ramakrishnan, Conversion of waste plastics into low-emissive hydrocarbon fuels through catalytic depolymerization in a new laboratory scale batch reactor. Int. J. Energy Environ. Eng. 8, 167–173 (2017)

    Article  CAS  Google Scholar 

  54. S. Devasahayam, Review: opportunities for simultaneous energy/materials conversion of carbon dioxide and plastics in metallurgical processes. Sustain. Mater. Technol. 22, e00119 (2019)

    CAS  Google Scholar 

  55. J. Schirmer, J.S. Kim, E. Klemm, Catalytic degradation of polyethylene using thermal gravimetric analysis and a cycled-spheres-reactor. J. Anal. Appl. Pyrol. 60, 205–217 (2001)

    Article  CAS  Google Scholar 

  56. J. Aguado, D.P. Serrano, M.G. San, Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system. J. Anal. Appl. Pyrol. 79, 415–423 (2008)

    Article  Google Scholar 

  57. P.J. Donaj, W. Kaminsky, F. Buzeto, W. Yang, Pyrolysis of polyolefins for increasing the yield of monomers’ recovery. Waste Manage. 32, 840–846 (2012)

    Article  CAS  Google Scholar 

  58. S. Chaianansutcharit, R. Katsutath, A. Chaisuwan, T. Bhaskar, A. Nigo, A. Muto et al., Catalytic degradation of polyolefins over hexagonal mesoporous silica: effect of aluminum addition. J. Anal. Appl. Pyrol. 80, 360–368 (2007)

    Article  CAS  Google Scholar 

  59. K. Moorthy Rajendran, V. Chintala, A. Sharma, S. Pal, J.K. Pandey, P. Ghodke, Review of catalyst materials in achieving the liquid hydrocarbon fuels from municipal mixed plastic waste (MMPW). Mater. Today Commun. 24, 100982 (2020)

    Article  CAS  Google Scholar 

  60. S.M. Al-Salem, A. Antelava, A. Constantinou, G. Manos, A. Dutta, A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manage. 197, 177–198 (2017)

    Article  CAS  PubMed  Google Scholar 

  61. M. Boronat, A. Corma, Are carbenium and carbonium ions reaction intermediates in zeolite-catalyzed reactions? Appl. Catal. A 336, 2–10 (2008)

    Article  CAS  Google Scholar 

  62. C. Muhammad, J.A. Onwudili, P.T. Williams, Catalytic pyrolysis of waste plastic from electrical and electronic equipment. J. Anal. Appl. Pyrol. 113, 332–339 (2015)

    Article  CAS  Google Scholar 

  63. M.R. Hernandez, A. Gomez, A.N. Garcia, J. Agullo, A. Marcilla, Effect of the temperature in the nature and extension of the primary and secondary reactions in the thermal and HZSM-5 catalytic pyrolysis of HDPE. Appl. Catal. A General 317, 183–194 (2007)

    Article  CAS  Google Scholar 

  64. S.S.Z. Salmasi, M.S. Abbas-Abadi, M.N. Haghighi, H. Abedini, The effect of different zeolite based catalysts on the pyrolysis of poly butadiene rubber. Fuel 160, 544–548 (2015)

    Article  CAS  Google Scholar 

  65. G. Elordi, M. Olazar, G. Lopez, Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. J. Anal. Appl. Pyrol. 85, 345–351 (2009)

    Article  CAS  Google Scholar 

  66. G. Manos, A. Garforth, J. Dwyer, Catalytic degradation of high-density polyethylene over different zeolitic structures. Ind. Eng. Chem. Res. 39, 1198–1202 (2000)

    Article  CAS  Google Scholar 

  67. J.W. Park, J.H. Kim, G. Seo, The effect of pore shape on the catalytic performance of zeolites in the liquid-phase degradation of HDPE. Polym. Degrad. Stab. 76, 495–501 (2002)

    Article  CAS  Google Scholar 

  68. M. Syamsiro, H. Saptoadi, T. Norsujianto, P. Noviasri, S. Cheng, Z. Alimuddin et al., Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors. Energy Procedia 47, 180–188 (2014)

    Article  CAS  Google Scholar 

  69. K.H. Lee, Effects of the types of zeolites on catalytic upgrading of pyrolysis wax oil. J. Anal. Appl. Pyrol. 94, 209–214 (2012)

    Article  CAS  Google Scholar 

  70. G. Elordi, M. Olazar, M. Artetxe, P. Castano, J. Bilbao, Effect of the acidity of the HZSM-5 zeolite catalyst on the cracking of high density polyethylene in a conical spouted bed reactor. Appl. Catal. A 415–416, 89–95 (2012)

    Article  Google Scholar 

  71. C. Vasile, H. Pakdel, B. Mihai, Thermal and catalytic decomposition of mixed plastics. J. Anal. Appl. Pyrol. 57, 287–303 (2001)

    Article  CAS  Google Scholar 

  72. J. Jae, G.A. Tompsett, A.J. Foster, Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J. Catal. 279, 257–268 (2011)

    Article  CAS  Google Scholar 

  73. K. Sun, Q.X. Huang, Y. Chi, J.H. Yan, Effect of ZnCl2-activated biochar on catalytic pyrolysis of mixed waste plastics for producing aromatic-enriched oil. Waste Manage. 81, 128–137 (2018)

    Article  CAS  Google Scholar 

  74. Y.L. Sun, Y. Ma, S.Y. Li, C.T. Yue, Research progress in pyrolysis and catalytic pyrolysis of polyolefin plastics. Chem. Ind. Eng. Progress 40, 2784–2801 (2021)

    CAS  Google Scholar 

  75. Y. Sakata, M. Azhar Uddin, A. Muto, Y. Kanada, K. Koizumi, K. Murata, Catalytic degradation of polyethylene into fuel oil over mesoporous silica (KFS-16) catalyst. J. Anal. Appl. Pyrol. 43, 15–25 (1997)

    Article  CAS  Google Scholar 

  76. Y. Sakata, M. Azhar Uddin, A. Muto, Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. J. Anal. Appl. Pyrol. 51, 135–155 (1999)

    Article  CAS  Google Scholar 

  77. K.N. Aishwarya, S. Nangarthody, Microwave assisted pyrolysis of plastic waste. Procedia Technol. 25, 990–997 (2016)

    Article  Google Scholar 

  78. J. Sun, W.L. Wang, Q.Y. Yue, Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 9, 231 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  79. L.L. Fan, Y.N. Zhang, S.Y. Liu, N. Zhou, P. Chen, Y.H. Liu et al., Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO. Energy Convers. Manage. 149, 432–441 (2017)

    Article  CAS  Google Scholar 

  80. N. Zhou, L.L. Dai, Y.C. Lv, H. Li, W.Y. Deng, F.Q. Guo et al., Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chem. Eng. J. 418, 129412 (2021)

    Article  CAS  Google Scholar 

  81. M.Q. Dai, H. Xu, Z.S. Yu, S.W. Fang, L. Chen, W.L. Gu et al., Microwave-assisted fast co-pyrolysis behaviors and products between microalgae and polyvinyl chloride. Appl. Therm. Eng. 136, 9–15 (2018)

    Article  Google Scholar 

  82. Z. Liu, H.Q. Wang, X.D. Zhang, J.W. Liu, Y.Y. Zhou, Dechlorination of organochloride waste mixture by microwave irradiation before forming solid recovered fuel. Waste Manage. 62, 118–124 (2017)

    Article  CAS  Google Scholar 

  83. A. Undri, M. Frediani, L. Rosi, P. Frediani, Reverse polymerization of waste polystyrene through microwave assisted pyrolysis. J. Anal. Appl. Pyrol. 105, 35–42 (2014)

    Article  CAS  Google Scholar 

  84. A. Undri, L. Rosi, M. Frediani, P. Frediani, Efficient disposal of waste polyolefins through microwave assisted pyrolysis. Fuel 116, 662–671 (2014)

    Article  CAS  Google Scholar 

  85. A. Aboulkas, K. El Harfi, A. El Bouadili, Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Convers. Manage. 51, 1363–1369 (2010)

    Article  CAS  Google Scholar 

  86. P. Rex, I.P. Masilamani, L.R. Miranda, Microwave pyrolysis of polystyrene and polypropylene mixtures using different activated carbon from biomass. J. Energy Inst. 93, 1819–1832 (2020)

    Article  CAS  Google Scholar 

  87. E. Khaghanikavkani, M.M. Farid, J. Holdem, A. Williamson, Microwave pyrolysis of plastic. J. Chem. Eng. Process Technol. (2013). https://doi.org/10.4172/2157-7048.1000150

    Article  Google Scholar 

  88. K. Ding, S.S. Liu, Y. Huang, S.Y. Liu, N. Zhou, P. Peng et al., Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Convers. Manage. 196, 1316–1325 (2019)

    Article  CAS  Google Scholar 

  89. L.L. Fan, Z.Y. Su, J.B. Wu, Z.G. Xiao, P. Huang, L. Liu et al., Integrating continuous-stirred microwave pyrolysis with ex-situ catalytic upgrading for linear low-density polyethylene conversion: effects of parameter conditions. J. Anal. Appl. Pyrol. 157, 105213 (2021)

    Article  CAS  Google Scholar 

  90. X.D. Jing, J.Q. Dong, H.L. Huang, Y.X. Deng, H. Wen, Z.H. Xu et al., Interaction between feedstocks, absorbers and catalysts in the microwave pyrolysis process of waste plastics. J. Clean. Prod. 291, 125857 (2021)

    Article  CAS  Google Scholar 

  91. X.Y. Jie, W.S. Li, D. Slocombe, Y.G. Gao, I. Banerjee, S. Gonzalez-Cortes et al., Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nat. Catal. 3, 902–912 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Grant No.51961020) supported this work. The authors would like to thank Yunnan Province "Xingdian Talent Support Plan" industrial innovative talents (XDYC-CYCX-2022-0044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liu Bingguo or Yuwen Chao.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guangxiong, J., Bingguo, L., Guolin, L. et al. Research Progress on Gas Generation from Waste Plastics Through Pyrolysis. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00216-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00216-z

Keywords

Navigation