Skip to main content
Log in

Ultrathin Glass-Based Perovskite Solar Cells Employing Bilayer Electron Transport Layer

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In recent studies, flexible perovskite solar cells (PSCs) have exhibited high power conversion efficiency (PCE) coupled with remarkable mechanical stability. However, the conventional polymer substrates used in flexible PSCs possess high permeability to moisture and oxygen, leading to the rapid degradation of perovskite materials. In this work, we address these issues by employing ultrathin glass (UTG) substrates, which provide moisture impermeability while retaining flexibility. Additionally, we introduce a strategically designed SnO2/TiO2 bilayer as the electron transport layer (ETL). Our results reveal that PSCs incorporating the bilayer ETL achieve higher PCE than those with a monolayer ETL on conventional glass and UTG substrates. Furthermore, moisture permeability tests demonstrate that PSCs based on UTG substrates sustain their PCE over time, compared to their polymer-based counterparts. These results imply that UTG substrates, combined with a SnO2/TiO2 bilayer ETL, offer a promising solution for developing durable, high-performance, flexible PSCs suitable for long-term applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data are available upon request from the authors, and access to the data requires approval from the researchers.

References

  1. H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou, Y. Yang, Q. Zhou, A.S.R. Bati, H. Wan, Z. Wang, L. Zeng, J. Wang, P. Serles, Y. Liu, S. Teale, Y. Liu, M.I. Saidaminov, M. Li, N. Rolston, S. Hoogland, T. Filleter, M.G. Kanatzidis, B. Chen, Z. Ning, E.H. Sargent, Science 384, 189–193 (2024)

    Article  CAS  PubMed  Google Scholar 

  2. E.M. Hutter, M.C. Gélvez-Rueda, A. Osherov, V. Bulović, F.C. Grozema, S.D. Stranks, T.J. Savenije, Nat. Mater. 16, 115–120 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 982–988 (2014)

    Article  CAS  Google Scholar 

  4. Z. Zhang, W. Kim, M.J. Ko, Y. Li, Nano Converg. 10, 23 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Bae, J.W. Jo, P. Lee, M.J. Ko, ACS Appl. Mater. Interfaces 11, 17452–17458 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. F. Song, D. Zheng, J. Feng, J. Liu, T. Ye, Z. Li, K. Wang, S. Liu, D. Yang, Adv. Mater. 36, 2312041 (2024)

    Article  CAS  Google Scholar 

  7. J. Feng, APL Mater. 2 (2014)

  8. H.S. Jung, G.S. Han, N.-G. Park, M.J. Ko, Joule 3, 1850–1880 (2019)

    Article  CAS  Google Scholar 

  9. D.S. Lee, K.W. Kim, Y.-H. Seo, M.H. Ann, W. Lee, J. Nam, J. Chung, G. Seo, S. Nam, B.S. Ma, T.-S. Kim, Y. Kang, N.J. Jeon, J. Seo, S.S. Shin, Joule 8, 1380–1393 (2024)

    Article  CAS  Google Scholar 

  10. W. Kim, J. Kim, D. Kim, B. Koo, S. Yu, Y. Li, Y. Kim, M.J. Ko, npj Flex. Electron. 8, 20 (2024)

    Article  CAS  Google Scholar 

  11. J. Chung, S.S. Shin, K. Hwang, G. Kim, K.W. Kim, D.S. Lee, W. Kim, B.S. Ma, Y.-K. Kim, T.-S. Kim, J. Seo, Energy Environ. Sci. 13, 4854–4861 (2020)

    Article  CAS�� Google Scholar 

  12. M. Park, J.-Y. Kim, H.J. Son, C.-H. Lee, S.S. Jang, M.J. Ko, Nano Energy 26, 208–215 (2016)

    Article  CAS  Google Scholar 

  13. S. Castro-Hermosa, M. Top, J. Dagar, J. Fahlteich, T.M. Brown, Adv. Electron. Mater. 5, 1800978 (2019)

    Article  CAS  Google Scholar 

  14. S.B.M. Jaime, R.M.V. Alves, P.F.J. Bócoli, J. Drug Deliv. Sci. Technol. 71, 103330 (2022)

    CAS  Google Scholar 

  15. J.W. Jo, Y. Yoo, T. Jeong, S. Ahn, M.J. Ko, Electron. Mater. Lett. 14, 657–668 (2018)

    Article  CAS  Google Scholar 

  16. J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, ACS Nano 9, 1955–1963 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. J.A. Christians, P.A. Miranda Herrera, P.V. Kamat, J. Am. Chem. Soc. 137, 1530–1538 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. S. Castro-Hermosa, G. Lucarelli, M. Top, M. Fahland, J. Fahlteich, T.M. Brown, Cell Rep. Phys. Sci. 1, 100045 (2020)

    Article  Google Scholar 

  19. B. Dou, E.M. Miller, J.A. Christians, E.M. Sanehira, T.R. Klein, F.S. Barnes, S.E. Shaheen, S.M. Garner, S. Ghosh, A. Mallick, D. Basak, M.F.A.M. van Hest, J. Phys. Chem. Lett. 8, 4960–4966 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C.S. Moon, N.J. Jeon, J.-P. Correa-Baena, V. Bulović, S.S. Shin, M.G. Bawendi, J. Seo, Nature 590, 587–593 (2021)

    Article  CAS  PubMed  Google Scholar 

  21. M. Kim, J. Jeong, H. Lu, T.K. Lee, F.T. Eickemeyer, Y. Liu, I.W. Choi, S.J. Choi, Y. Jo, H.-B. Kim, S.-I. Mo, Y.-K. Kim, H. Lee, N.G. An, S. Cho, W.R. Tress, S.M. Zakeeruddin, A. Hagfeldt, J.Y. Kim, M. Grätzel, D.S. Kim, Science 375, 302–306 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. H.G. Lemos, J.H.H. Rossato, R.A. Ramos, J.V.M. Lima, L.J. Affonço, S. Trofimov, J.J.I. Michel, S.L. Fernandes, B. Naydenov, C.F.O. Graeff, J. Mater. Chem. C 11, 3571–3580 (2023)

    Article  CAS  Google Scholar 

  23. I. Jeong, H. Jung, M. Park, J.S. Park, H.J. Son, J. Joo, J. Lee, M.J. Ko, Nano Energy 28, 380–389 (2016)

    Article  CAS  Google Scholar 

  24. G.S. Han, J. Kim, S. Bae, S. Han, Y.J. Kim, O.Y. Gong, P. Lee, M.J. Ko, H.S. Jung, ACS Energy Lett. 4, 1845–1851 (2019)

    Article  CAS  Google Scholar 

  25. K. Wang, S. Olthof, W.S. Subhani, X. Jiang, Y. Cao, L. Duan, H. Wang, M. Du, S. Liu, Nano Energy 68, 104289 (2020)

    Article  CAS  Google Scholar 

  26. I. Jeong, Y.H. Park, S. Bae, M. Park, H. Jeong, P. Lee, M.J. Ko, ACS Appl. Mater. Interfaces 9, 36865–36874 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. W. Xiang, S. Liu, W. Tress, Angew. Chem. Int. Ed. 60, 26440–26453 (2021)

    Article  CAS  Google Scholar 

  28. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun. 5, 5784 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. Z. Li, Z. Wang, C. Jia, Z. Wan, C. Zhi, C. Li, M. Zhang, C. Zhang, Z. Li, Nano Energy 94, 106919 (2022)

    Article  CAS  Google Scholar 

  30. D. Yang, R.X. Yang, K. Wang, C.C. Wu, X.J. Zhu, J.S. Feng, X.D. Ren, G.J. Fang, S. Priya, S.Z. Liu, Nat. Commun. 9, 5302 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is the result of a research project conducted with the funds of the Open R&D program of Korea Electric Power Corporation. (R23XH02) This work was also supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (Sector coupling energy industry advancement manpower training program, 20224000000440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jae Ko.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1093 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W., Cheng, J., Choi, J. et al. Ultrathin Glass-Based Perovskite Solar Cells Employing Bilayer Electron Transport Layer. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00213-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00213-2

Keywords

Navigation