Skip to main content
Log in

Poisson-Arago spot for gravitational waves

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

For the observer at infinity, a Schwarzschild black hole serves as an attractive opaque disk with a radius of \(3\,\sqrt 3 M\) that will produce the diffraction pattern of gravitational waves (GWs). In this study, we demonstrate that a bright spot, which is a diffraction effect analogous to the Poisson-Arago spot in optics, will appear when an ingoing (quasi-)plane GW is diffracted by a Schwarzschild black hole. Here, we propose the diffraction effect of the GWs described by the exact diffraction solution of the GWs using the Heun function. For the first time, the Fresnel half-wave zone method is proposed to calculate the angular part of the GW scattering stripes for the observer at infinity. The prospect of observing the diffraction bright spot is discussed with an eikonal approximation. For normal incidence (quasi)-plane waves with 100 Hz (0.1 Hz) frequency diffracted by the central black hole of the Milky Way, the time delay between the Earth bathed in a bright spot and the minimum of the first dark stripe is 3.86 (3860) d. We will witness the second bright fringe (40% amplitude of the central bright spot) after 6.2 (6200) d. This new diffraction pattern involving the early phase of inspirals and pulsars as continuous gravitational wave sources is a potential scientific target for future space-and ground-based gravitational wave detectors, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Näherungsweise Integration der Feldgleichungen der Gravitation, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 1, 688 (1916).

    Google Scholar 

  2. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016), arXiv: 1602.03837.

    Article  ADS  MathSciNet  Google Scholar 

  3. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241103 (2016), arXiv: 1606.04855.

    Article  ADS  Google Scholar 

  4. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 118, 221101 (2017), arXiv: 1706.01812.

    Article  ADS  Google Scholar 

  5. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophys. J. 851, L35 (2017), arXiv: 1711.05578.

    Article  ADS  Google Scholar 

  6. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 141101 (2017), arXiv: 1709.09660.

    Article  ADS  Google Scholar 

  7. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832.

    Article  ADS  Google Scholar 

  8. T. T. Nakamura, Phys. Rev. Lett. 80, 1138 (1998).

    Article  ADS  Google Scholar 

  9. C. Baraldo, A. Hosoya, and T. T. Nakamura, Phys. Rev. D 59, 083001 (1999).

    Article  ADS  Google Scholar 

  10. R. Takahashi, and T. Nakamura, Astrophys. J. 595, 1039 (2003), arXiv: astro-ph/0305055.

    Article  ADS  Google Scholar 

  11. P. C. Peters, Phys. Rev. D 9, 2207 (1974).

    Article  ADS  Google Scholar 

  12. M. Oguri, Rep. Prog. Phys. 82, 126901 (2019), arXiv: 1907.06830.

    Article  ADS  MathSciNet  Google Scholar 

  13. B. P. Abbott, et al. (KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration), Living. Rev. Relativ. 23, 3 (2020).

    Article  ADS  Google Scholar 

  14. X. L. Fan, J. Li, X. Li, Y. H. Zhong, and J. W. Cao, Sci. China-Phys. Mech. Astron. 62, 969512 (2019), arXiv: 1811.01380.

    Article  ADS  Google Scholar 

  15. T. Regge, and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  16. R. A. Matzner, J. Math. Phys. 9, 163 (1968).

    Article  ADS  Google Scholar 

  17. C. V. Vishveshwara, Nature 227, 936 (1970).

    Article  ADS  Google Scholar 

  18. B. F. Schutz, and C. M. Will, Astrophys. J. 291, L33 (1985).

    Article  ADS  Google Scholar 

  19. R. A. Matzner, and M. P. Ryan, Phys. Rev. D 16, 1636 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  20. S. R. Dolan, Class. Quantum Grav. 25, 235002 (2008), arXiv: 0801.3805.

    Article  ADS  Google Scholar 

  21. L. C. B. Crispino, S. R. Dolan, and E. S. Oliveira, Phys. Rev. Lett. 102, 231103 (2009), arXiv: 0905.3339.

    Article  ADS  MathSciNet  Google Scholar 

  22. Y. Nambu, and S. Noda, Class. Quantum Grav. 33, 075011 (2016), arXiv: 1502.05468.

    Article  ADS  Google Scholar 

  23. N. Fröman, P. O. Fröman, N. Andersson, and A. Hökback, Phys. Rev. D 45, 2609 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  24. N. Andersson, and K. E. Thylwe, Class. Quantum Grav. 11, 2991 (1994).

    Article  ADS  Google Scholar 

  25. W. H. Press, Astrophys. J. 170, L105 (1971).

    Article  ADS  Google Scholar 

  26. Y. Nambu, S. Noda, and Y. Sakai, Phys. Rev. D 100, 064037 (2019), arXiv: 1905.01793.

    Article  ADS  MathSciNet  Google Scholar 

  27. N. Andersson, and B. P. Jensen, arXiv: gr-qc/0011025.

  28. J. J. A. H. Futterman, F. Handler, and R. Matzner, Scattering from Black Holes (Cambridge University Press, Cambridge, 1995).

    MATH  Google Scholar 

  29. C. J. Goebel, Astrophys. J. 172, L95 (1972).

    Article  ADS  Google Scholar 

  30. V. Cardoso, A. S. Miranda, E. Berti, H. Witek, and V. T. Zanchin, Phys. Rev. D 79, 064016 (2009), arXiv: 0812.1806.

    Article  ADS  MathSciNet  Google Scholar 

  31. H. Yang, D. A. Nichols, F. Zhang, A. Zimmerman, Z. Zhang, and Y. Chen, Phys. Rev. D 86, 104006 (2012), arXiv: 1207.4253.

    Article  ADS  Google Scholar 

  32. M. Berti, arXiv: 1410.4481.

  33. D. R. Yennie, D. G. Ravenhall, and R. N. Wilson, Phys. Rev. 95, 500 (1954).

    Article  ADS  Google Scholar 

  34. R. A. Matzner, C. DeWitte-Morette, B. Nelson, and T. R. Zhang, Phys. Rev. D 31, 1869 (1985).

    Article  ADS  Google Scholar 

  35. T. Stratton, and S. R. Dolan, Phys. Rev. D 100, 024007 (2019), arXiv: 1903.00025.

    Article  ADS  MathSciNet  Google Scholar 

  36. P. P. Fiziev, Class. Quantum Grav. 23, 2447 (2006), arXiv: gr-qc/0509123.

    Article  ADS  Google Scholar 

  37. E. Barausse, V. Cardoso, and P. Pani, Phys. Rev. D 89, 104059 (2014), arXiv: 1404.7149.

    Article  ADS  Google Scholar 

  38. S. Hou, X. L. Fan, and Z. H. Zhu, Phys. Rev. D 100, 064028 (2019), arXiv: 1907.07486.

    Article  ADS  Google Scholar 

  39. A. Ronveaux, Heun’s Differential Equations (Clarendon Press, Oxford, 1999).

    MATH  Google Scholar 

  40. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1983).

    MATH  Google Scholar 

  41. X. Gong, S. Xu, S. Bai, Z. Cao, G. Chen, Y. Chen, X. He, G. Heinzel, Y. K. Lau, C. Liu, J. Luo, Z. Luo, A. P. Patón, A. Rüdiger, M. Shao, R. Spurzem, Y. Wang, P. Xu, H. C. Yeh, Y. Yuan, and Z. Zhou, Class. Quantum Grav. 28, 094012 (2011).

    Article  ADS  Google Scholar 

  42. J. Luo, L. S. Chen, H. Z. Duan, Y. G. Gong, S. Hu, J. Ji, Q. Liu, J. Mei, V. Milyukov, M. Sazhin, C. G. Shao, V. T. Toth, H. B. Tu, Y. Wang, Y. Wang, H. C. Yeh, M. S. Zhan, Y. Zhang, V. Zharov, and Z. B. Zhou, Class. Quantum Grav. 33, 035010 (2016), arXiv: 1512.02076.

    Article  ADS  Google Scholar 

  43. R. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration and KAGRA Collaboration), arXiv: 2107.00600.

  44. X. Chen, and W. B. Han, Commun Phys 1, 53 (2018), arXiv: 1801.05780.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiLong Fan.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11922303, 11673008, 11075106, 11575083, and 11275128). XiLong Fan was also supported by the Hubei Province Natural Science Fund for the Distinguished Young Scholars (Grant No. 2019CFA052), and Newton International Fellowship Alumni Follow on Funding. HongSheng Zhang was also supported Shandong Province Natural Science Foundation (Grant No. ZR201709220395). The authors would like to thank the referees for their valuable comments which considerably improved the original text. The authors thank Yanbei Chen for valuable comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Fan, X. Poisson-Arago spot for gravitational waves. Sci. China Phys. Mech. Astron. 64, 120462 (2021). https://doi.org/10.1007/s11433-021-1764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1764-y

Keywords

Navigation