Skip to main content

Advertisement

Log in

Age-related decline in thickness and surface area in the cortical surface and hippocampus: lifespan trajectories and decade-by-decade analyses

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Previous studies on age-related changes in cortical and hippocampal morphology were not designed or able to reveal the complex spatial patterns of changes across the lifespan. To this end, the current study examined these changes in a decade-by-decade manner by comparing consecutive age decades at the vertex-wise level. Additionally, the lifespan trajectories of cortical/hippocampal mean thickness and total surface area were modeled and plotted out to provide an overview of their age-related changes. Using two lifespan datasets (Ntotal = 1378; 18 ≤ age ≤ 100), vertex-wise thickness and surface area measurements were extracted from the cortical and unfolded hippocampal surfaces and analyzed using whole-brain/hippocampus vertex-wise analyses. Lifespan trajectories of cortical/hippocampal mean thickness and total surface area were modeled with generalized additive models for location, scale, and shape. These models revealed fairly linear declines in both cortical measures and inverted U-shaped trajectories for both hippocampal measures. Across the different age decades, the sizes and locations of cortical thinning clusters were highly variable across the age decades. No significant clusters of cortical surface area changes were observed across the age decades. Significant clusters of hippocampal surface area and thickness reduction were not observed until the 70s. Generally, the agreement between datasets on the hippocampal findings was much higher than those of the cortical surface. These findings revealed important nuances in the age-related changes of cortical and hippocampal morphology and cautioned against using lifespan trajectories to infer decade-by-decade changes in the cortical surface and the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, et al. Brain charts for the human lifespan. Nature. 2022;604:525–33. https://doi.org/10.1038/s41586-022-04554-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Coupé P, Catheline G, Lanuza E, Manjón JV. Initiative for the ADN. Towards a unified analysis of brain maturation and aging across the entire lifespan: a MRI analysis. Hum Brain Mapp. 2017;38:5501–18. https://doi.org/10.1002/hbm.23743.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fjell AM, Grydeland H, Krogsrud SK, Amlien I, Rohani DA, Ferschmann L, et al. Development and aging of cortical thickness correspond to genetic organization patterns. Proc Natl Acad Sci. 2015;112:15462–7. https://doi.org/10.1073/pnas.1508831112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, et al. Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging. 2012;33:617.e1-617.e9. https://doi.org/10.1016/j.neurobiolaging.2010.07.013.

    Article  PubMed  Google Scholar 

  5. McGinnis SM, Brickhouse M, Pascual B, Dickerson BC. Age-related changes in the thickness of cortical zones in humans. Brain Topogr. 2011;24:279–91. https://doi.org/10.1007/s10548-011-0198-6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K, Aasland HW, et al. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J Neurosci. 2014;34:8488–98. https://doi.org/10.1523/JNEUROSCI.0391-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wierenga LM, Langen M, Oranje B, Durston S. Unique developmental trajectories of cortical thickness and surface area. Neuroimage. 2014;87:120–6. https://doi.org/10.1016/j.neuroimage.2013.11.010.

    Article  PubMed  Google Scholar 

  8. Ziegler G, Dahnke R, Jäncke L, Yotter RA, May A, Gaser C. Brain structural trajectories over the adult lifespan. Hum Brain Mapp. 2012;33:2377–89. https://doi.org/10.1002/hbm.21374.

    Article  PubMed  Google Scholar 

  9. Crivello F, Tzourio-Mazoyer N, Tzourio C, Mazoyer B. Longitudinal assessment of global and regional rate of grey matter atrophy in 1,172 healthy older adults: modulation by sex and age. PLoS ONE. 2014;9:e114478. https://doi.org/10.1371/journal.pone.0114478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. One-year brain atrophy evident in healthy aging. J Neurosci. 2009;29:15223–31. https://doi.org/10.1523/JNEUROSCI.3252-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sele S, Liem F, Mérillat S, Jäncke L. Age-related decline in the brain: a longitudinal study on inter-individual variability of cortical thickness, area, volume, and cognition. Neuroimage. 2021;240:118370. https://doi.org/10.1016/j.neuroimage.2021.118370.

    Article  PubMed  Google Scholar 

  12. Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex. 2009;19:2728–35. https://doi.org/10.1093/cercor/bhp026.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Strike LT, Hansell NK, Couvy-Duchesne B, Thompson PM, de Zubicaray GI, McMahon KL, et al. Genetic complexity of cortical structure: differences in genetic and environmental factors influencing cortical surface area and thickness. Cereb Cortex. 2019;29:952–62. https://doi.org/10.1093/cercor/bhy002.

    Article  PubMed  Google Scholar 

  14. DeKraker J, Ferko KM, Lau JC, Köhler S, Khan AR. Unfolding the hippocampus: an intrinsic coordinate system for subfield segmentations and quantitative mapping. Neuroimage. 2018;167:408–18. https://doi.org/10.1016/j.neuroimage.2017.11.054.

    Article  PubMed  Google Scholar 

  15. DeKraker J, Haast RA, Yousif MD, Karat B, Lau JC, Köhler S, et al. Automated hippocampal unfolding for morphometry and subfield segmentation with HippUnfold. eLife. 2022;11:e77945. https://doi.org/10.7554/eLife.77945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Langnes E, Sneve MH, Sederevicius D, Amlien IK, Walhovd KB, Fjell AM. Anterior and posterior hippocampus macro- and microstructure across the lifespan in relation to memory—a longitudinal study. Hippocampus. 2020;30:678–92. https://doi.org/10.1002/hipo.23189.

    Article  PubMed  Google Scholar 

  17. Kyle CT, Smuda DN, Hassan AS, Ekstrom AD. Roles of human hippocampal subfields in retrieval of spatial and temporal context. Behav Brain Res. 2015;278:549–58. https://doi.org/10.1016/j.bbr.2014.10.034.

    Article  PubMed  Google Scholar 

  18. Stokes J, Kyle C, Ekstrom AD. Complementary roles of human hippocampal subfields in differentiation and integration of spatial context. J Cogn Neurosci. 2015;27:546–59. https://doi.org/10.1162/jocn_a_00736.

    Article  PubMed  Google Scholar 

  19. Dalton MA, McCormick C, Maguire EA. Differences in functional connectivity along the anterior-posterior axis of human hippocampal subfields. Neuroimage. 2019;192:38–51. https://doi.org/10.1016/j.neuroimage.2019.02.066.

    Article  PubMed  Google Scholar 

  20. Shafto MA, Tyler LK, Dixon M, Taylor JR, Rowe JB, Cusack R, et al. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurol. 2014;14:204. https://doi.org/10.1186/s12883-014-0204-1.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Taylor JR, Williams N, Cusack R, Auer T, Shafto MA, Dixon M, et al. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. Neuroimage. 2017;144:262–9. https://doi.org/10.1016/j.neuroimage.2015.09.018.

    Article  PubMed  Google Scholar 

  22. Bookheimer SY, Salat DH, Terpstra M, Ances BM, Barch DM, Buckner RL, et al. The lifespan human connectome project in aging: an overview. Neuroimage. 2019;185:335–48. https://doi.org/10.1016/j.neuroimage.2018.10.009.

    Article  PubMed  Google Scholar 

  23. Harms MP, Somerville LH, Ances BM, Andersson J, Barch DM, Bastiani M, et al. Extending the Human Connectome Project across ages: imaging protocols for the Lifespan Development and Aging projects. Neuroimage. 2018;183:972–84. https://doi.org/10.1016/j.neuroimage.2018.09.060.

    Article  PubMed  Google Scholar 

  24. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, et al. A hybrid approach to the skull stripping problem in MRI. NeuroImage. 2004;22:1060–75. https://doi.org/10.1016/j.neuroimage.2004.03.032.

    Article  CAS  PubMed  Google Scholar 

  25. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55. https://doi.org/10.1016/S0896-6273(02)00569-X.

  26. Fischl B, Salat DH, van der Kouwe AJW, Makris N, Ségonne F, Quinn BT, et al. Sequence-independent segmentation of magnetic resonance images. NeuroImage. 2004;23:S69-84. https://doi.org/10.1016/j.neuroimage.2004.07.016.

    Article  PubMed  Google Scholar 

  27. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998;17:87–97.

    Article  CAS  PubMed  Google Scholar 

  28. Fischl B, Liu A, Dale AM. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Med Imaging. 2001;20:70–80. https://doi.org/10.1109/42.906426.

  29. Segonne F, Pacheco J, Fischl B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging. 2007;26:518–29.

    Article  PubMed  Google Scholar 

  30. Dale A, Fischl B, Sereno MI. Cortical surface-based analysis: I Segmentation and surface reconstruction. NeuroImage. 1999;9:179–94. https://doi.org/10.1006/nimg.1998.0395.

    Article  CAS  PubMed  Google Scholar 

  31. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci. 2000;97:11050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fischl B, Sereno MI, Dale A. Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. Neuroimage. 1999;9:195–207. https://doi.org/10.1006/nimg.1998.0396.

    Article  CAS  PubMed  Google Scholar 

  33. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12:26–41. https://doi.org/10.1016/j.media.2007.06.004.

    Article  CAS  PubMed  Google Scholar 

  34. Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J, Hawkes DJ, et al. Fast free-form deformation using graphics processing units. Comput Methods Programs Biomed. 2010;98:278–84. https://doi.org/10.1016/j.cmpb.2009.09.002.

    Article  PubMed  Google Scholar 

  35. Pauli WM, Nili AN, Tyszka JM. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci Data. 2018;5: 180063. https://doi.org/10.1038/sdata.2018.63.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yushkevich PA, Pashchinskiy A, Oguz I, Mohan S, Schmitt JE, Stein JM, et al. User-guided segmentation of multi-modality medical imaging datasets with ITK-SNAP. Neuroinformatics. 2019;17:83–102. https://doi.org/10.1007/s12021-018-9385-x.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18:203–11. https://doi.org/10.1038/s41592-020-01008-z.

    Article  CAS  PubMed  Google Scholar 

  38. Qiu A, Miller MI. Multi-structure network shape analysis via normal surface momentum maps. Neuroimage. 2008;42:1430–8. https://doi.org/10.1016/j.neuroimage.2008.04.257.

    Article  PubMed  Google Scholar 

  39. DeKraker J, Lau JC, Ferko KM, Khan AR, Köhler S. Hippocampal subfields revealed through unfolding and unsupervised clustering of laminar and morphological features in 3D BigBrain. Neuroimage. 2020;206:116328. https://doi.org/10.1016/j.neuroimage.2019.116328.

    Article  CAS  PubMed  Google Scholar 

  40. Fortin J-P, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104–20. https://doi.org/10.1016/j.neuroimage.2017.11.024.

    Article  PubMed  Google Scholar 

  41. Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape. J R Stat Soc Ser C Appl Stat. 2005;54:507–54. https://doi.org/10.1111/j.1467-9876.2005.00510.x.

    Article  Google Scholar 

  42. Borghi E, de Onis M, Garza C, Van den Broeck J, Frongillo EA, Grummer-Strawn L, et al. Construction of the World Health Organization child growth standards: selection of methods for attained growth curves. Stat Med. 2006;25:247–65. https://doi.org/10.1002/sim.2227.

    Article  CAS  PubMed  Google Scholar 

  43. Narvacan K, Treit S, Camicioli R, Martin W, Beaulieu C. Evolution of deep gray matter volume across the human lifespan. Hum Brain Mapp. 2017;38:3771–90. https://doi.org/10.1002/hbm.23604.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gennatas ED, Avants BB, Wolf DH, Satterthwaite TD, Ruparel K, Ciric R, et al. Age-related effects and sex differences in gray matter density, volume, mass, and cortical thickness from childhood to young adulthood. J Neurosci. 2017;37:5065–73. https://doi.org/10.1523/JNEUROSCI.3550-16.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sowell ER, Thompson PM, Toga AW. Mapping changes in the human cortex throughout the span of life. Neuroscientist. 2004;10:372–92. https://doi.org/10.1177/1073858404263960.

    Article  PubMed  Google Scholar 

  46. Eyme KM, Domin M, Gerlach FH, Hosten N, Schmidt CO, Gaser C, et al. Physically active life style is associated with increased grey matter brain volume in a medial parieto-frontal network. Behav Brain Res. 2019;359:215–22. https://doi.org/10.1016/j.bbr.2018.10.042.

    Article  CAS  PubMed  Google Scholar 

  47. Loued-Khenissi L, Trofimova O, Vollenweider P, Marques-Vidal P, Preisig M, Lutti A, et al. Signatures of life course socioeconomic conditions in brain anatomy. Hum Brain Mapp. 2022;43:2582–606. https://doi.org/10.1002/hbm.25807.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Habeck C, Eich TS, Gu Y, Stern Y. Occupational patterns of structural brain health: independent contributions beyond education, gender, intelligence, and age. Front Hum Neurosci 2019;13. https://doi.org/10.3389/fnhum.2019.00449.

  49. Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM. The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cereb Cortex. 2013;23:2521–30. https://doi.org/10.1093/cercor/bhs231.

    Article  PubMed  Google Scholar 

  50. Essen DCV. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature. 1997;385:313–8. https://doi.org/10.1038/385313a0.

    Article  PubMed  Google Scholar 

  51. Homayouni R, Canada KL, Saifullah S, Foster DJ, Thill C, Raz N, et al. Age-related differences in hippocampal subfield volumes across the human lifespan: a meta-analysis. Hippocampus. 2023;33:1292–315. https://doi.org/10.1002/hipo.23582.

    Article  PubMed  Google Scholar 

  52. Elliott ML, Belsky DW, Knodt AR, Ireland D, Melzer TR, Poulton R, et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Mol Psychiatry. 2021;26:3829–38. https://doi.org/10.1038/s41380-019-0626-7.

    Article  PubMed  Google Scholar 

  53. Clouston SAP, Terrera GM, Rodgers JL, O’Keefe P, Mann FD, Lewis NA, et al. Cohort and period effects as explanations for declining dementia trends and cognitive aging. Popul Dev Rev. 2021;47:611–37. https://doi.org/10.1111/padr.12409.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Melikyan ZA, Malek-Ahmadi M, O’Connor K, Atri A, Kawas CH, Corrada MM. Norms and equivalences for MoCA-30, MoCA-22, and MMSE in the oldest-old. Aging Clin Exp Res. 2021;33:3303–11. https://doi.org/10.1007/s40520-021-01886-z.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Spisák T, Spisák Z, Zunhammer M, Bingel U, Smith S, Nichols T, et al. Probabilistic TFCE: a generalized combination of cluster size and voxel intensity to increase statistical power. Neuroimage. 2019;185:12–26. https://doi.org/10.1016/j.neuroimage.2018.09.078.

    Article  PubMed  Google Scholar 

Download references

Funding

Junhong Yu is supported by the Nanyang Assistant Professorship (Award no. 021080–00001). The HCP Aging data used in the preparation of this manuscript were obtained from the National Institute of Mental Health (NIMH) Data Archive (NDA). NDA is a collaborative informatics system created by the National Institutes of Health to provide a national resource to support and accelerate research in mental health. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or of the submitters submitting original data to NDA. The HCP Aging study was supported by the National Institute On Aging of the National Institutes of Health under Award Number U01AG052564 and by funds provided by the McDonnell Center for Systems Neuroscience at Washington University in St. Louis. Data collection and sharing for the Cam-CAN dataset was funded by the UK Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1), together with support from the UK Medical Research Council and the University of Cambridge, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J. Age-related decline in thickness and surface area in the cortical surface and hippocampus: lifespan trajectories and decade-by-decade analyses. GeroScience (2024). https://doi.org/10.1007/s11357-024-01220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01220-1

Keywords

Navigation