Skip to main content
Log in

Exploring haplotype block structure, runs of homozygosity, and effective population size among dairy cattle breeds of India

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The present study aimed to explore haplotype structure, runs of homozygosity (ROH), effective population size and persistence of gametic phase among three indigenous dairy cattle breeds, viz., Sahiwal (n = 19), Tharparkar (n = 17), and Gir (n = 16) by using BovineHD single nucleotide polymorphism (SNP) genotyping assay. The filtered SNPs after quality control ranged from 44% in Sahiwal to 53% in Gir. The highest number of haplotype blocks was observed in Tharparkar (15,640) and the lowest in Sahiwal (8027) spanning 17.3% and 7.8% of genome, respectively. The average block length was found close to 26 kb which suggests that multiple recombination events fragmented the ancestral haplotypes into smaller sizes. Gir cattle had the largest number of runs of homozygosity (ROH) regions (1762) followed by Tharparkar (1528) and Sahiwal (1138). Without pedigree information, inbreeding coefficients estimated from ROH (FROH) revealed that Gir had the highest FROH (0.099) proposing more inbreeding rate in this population. Effective population size (Ne) decreased slowly over the last 60 generations and at 13 generations ago; Ne was estimated as 70 for all the three dairy breeds. The highest gametic phase correlation (r = 0.78) was observed for Sahiwal and Tharparkar breed pair suggesting formulation of multi-breed reference population for successful implementation of genomic selection among dairy breeds. The decline in effective population size among native Indian cattle breeds may help in formulating strategies for conservation and genetic improvement of native germplasm for future use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The BovineHD BeadChip data on three Indian dairy cattle breeds is available with the corresponding author. The dataset can be provided to the researchers on request to the corresponding author. The data is also available with the following link: http://krishi.icar.gov.in/jspui/handle/123456789/31167.

References

  • Barbato, M., Orozco-terWengel, P., Tapio, M. and Bruford, M. W. 2015. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Frontiers in Genetics, 6, 109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett, J. C., Fry, B., Maller, J. and Daly, M. J. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265.

    Article  CAS  PubMed  Google Scholar 

  • Biegelmeyer, P., Gulias-Gomes, C. C., Caetano, A. R., Steibel, J. P. and Cardoso, F. F. 2016. Linkage disequilibrium, persistence of phase and effective population size estimates in Hereford and Braford cattle. BMC Genetics, 17, 32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calus, M. P. L., Meuwissen, T. H. E., de Roos, A. P. W. and Veerkamp, R. F. 2008. Accuracy of genomic selection using different methods to define haplotypes. Genetics, 178, 553–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhotaray, S., Panigrahi, M., Pal, D., et al. 2019. Genome-wide estimation of inbreeding coefficient, effective population size and haplotype blocks in Vrindavani crossbred cattle strain of India. Biological Rhythm Research, 52(5), 666-679.

    Article  Google Scholar 

  • Daetwyler, H. D., Pong-Wong, R., Villanueva, B. and Woolliams, J. A. 2010. The impact of genetic architecture on genome-wide evaluation methods. Genetics, 185, 1021-1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewangan, P., Panigrahi, M., Kumar, A., Saravanan, B. C., Ghosh, S., Asaf, V. M. and Bhushan, B. 2015. The mRNA expression of immune-related genes in crossbred and Tharparkar cattle in response to in vitro infection with Theileria annulata. Molecular Biology Reports, 42, 1247-1255.

    Article  CAS  PubMed  Google Scholar 

  • Dixit, S. P., Singh, S., Ganguly, I., Bhatia, A. K., Sharma, A., Kumar, N. A., Dang, A. K. and Jayakumar, S. 2020. Genome-wide runs of Homozygosity revealed selection signatures in Bos indicus. Frontiers in Genetics, 11, 92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falconer, D. S. and Mackey, T. F. C. 1996. Introduction to Quantitative Genetics. 4th Edition, Longmans Green, Harlow.

  • Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M. et al. 2002. The structure of haplotype blocks in the human genome. Science, 296, 2225-2229.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, J., Morton, N. and Collins, A. 2006. Extended tracts of homozygosity in outbred human populations. Human Molecular Genetics, 5, 789-795.

    Article  Google Scholar 

  • Goszczynski, D., Molina, A., Terán, E., Morales-Durand, H., Ross, P., Cheng, H., et al. 2018. Runs of homozygosity in a selected cattle population with extremely inbred bulls: descriptive and functional analyses revealed highly variable patterns. PLoS One, 13, e0200069.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karimi, K., Koshkoiyeh, A. E., Fozi, M. A., Porto-Neto, L. R. and Gondro, C. 2016. Prioritization for conservation of Iranian native cattle breeds based on genome-wide SNP data. Conservation Genetics, 17, 77-89.

    Article  Google Scholar 

  • Keller, M. C., Visscher, P. M. and Goddard, M. E. 2011. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics, 189, 237-249.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, E., Sonstegard, T. and Rothschild, M. F. 2015. Recent artificial selection in U.S. Jersey cattle impacts autozygosity levels of specific genomic regions. BMC Genomics, 16(1), 302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larmer, S. G., Sargolzaei, M. and Schenkel, F. S. 2014. Extent of linkage disequilibrium, consistency of gametic phase, and imputation accuracy within and across Canadian dairy breeds. Journal of Dairy Science, 97, 3128-3141.

    Article  CAS  PubMed  Google Scholar 

  • Makina, S. O., Muchadeyi, F. C., van Marle-Koster, E., Taylor, J. F., Makgahlela, M. L. and Maiwashe, A. 2015. Genome-wide scan for selection signatures in six cattle breeds in South Africa. Genetics Selection Evolution, 47, 92.

    Article  Google Scholar 

  • Marras, G., Gaspa, G., Sorbolini, S., Dimauro, C., Ajmone-Marsam, P., Valentini, A., et al. 2014. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics, 46, 110-121.

    Article  PubMed  Google Scholar 

  • McQuillan, R., Leutenegger, A. L., Abdel-Rahman, R., Franklin, C. S., Pericic, M., Barac-Lauc, L., et al. 2008. Runs of homozygosity in European populations. American Journal of Human Genetics, 83, 359-372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokry, F., Buzanskas, M., de Alvarenga Mudadu, M., do Amaral Grossi, D., Higa, R., Ventura, R., et al. 2014. Linkage disequilibrium and haplotype block structure in a composite beef cattle breed. BMC Genomics, 15, S6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pryce, J. E., Bolormaa, S., Chamberlain, A. J., Bowman, P. J., Savin, K., et al. 2010. A validated genome-wide association study in 2 dairy cattle breeds for milk production and fertility traits using variable length haplotypes. Journal of Dairy Science, 93, 3331-3345.

    Article  CAS  PubMed  Google Scholar 

  • Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J. and Sham, P. C. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81, 559-575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purfield, D. C., Berry, D. P., McParland, S. and Bradley, D. G. 2012. Runs of homozygosity and population history in cattle. BMC Genetics, 13, 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan, K. A., Panigrahi, M., Kumar, H., Parida, S., et al. 2020. Genome-wide assessment of genetic diversity, linkage disequilibrium and haplotype block structure in Tharparkar cattle breed of India. Animal Biotechnology, 33(2), 297-311.

    Article  PubMed  Google Scholar 

  • Singh, A., Mehrotra, A., Gondro, C., et al. 2020. Signatures of selection in composite Vrindavani cattle of India. Frontiers in Genetics, 11, 589496.

    Article  PubMed  PubMed Central  Google Scholar 

  • Villa-Angulo, R., Matukumalli, L. K., Gill, C. A., Choi, J., Van Tassell, C. P. and Grefenstette, J. J. 2009. High-resolution haplotype block structure in the cattle genome. BMC Genetics 10, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, L., Zhu, B., Wang, Z., et al. 2019. Evaluation of linkage disequilibrium, effective population size and haplotype block structure in Chinese Cattle. Animals, 9(3), 83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Guldbrandtsen, B., Bosse, M., Lund, M. S. and Sahana, G. 2015. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics, 16(1), 542.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to express thank to ICAR-National Dairy Research Institute, Karnal (Haryana), Divya Jyoti Jagrati Sansthan, Noormahal, Jalandhar (Punjab), and Rajasthan University of Veterinary and Animal Sciences, Bikaner (Rajasthan) for providing the biological samples. This study was also supported by ICAR-National Bureau of Animal Genetic Resources to conduct the research work and data analysis.

Funding

We would like to acknowledge the Department of Biotechnology (DBT), Government of India, for providing funds to do the research work.

Author information

Authors and Affiliations

Authors

Contributions

SD: own PhD research work. AS: major guide. SPD: designed the work. AK: helped in analysis. RB: compilation and writing manuscript.

Corresponding author

Correspondence to Soumya Dash.

Ethics declarations

Statement of animal rights

This study does not include animal experiments.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S., Singh, A., Dixit, S.P. et al. Exploring haplotype block structure, runs of homozygosity, and effective population size among dairy cattle breeds of India. Trop Anim Health Prod 55, 129 (2023). https://doi.org/10.1007/s11250-023-03534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-023-03534-2

Keywords

Navigation