Skip to main content
Log in

Forecasting the Dst Index with Temporal Convolutional Network and Integrated Gradients

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The Disturbance Storm Time (Dst) Index stands as a crucial geomagnetic metric, serving to quantify the intensity of geomagnetic disturbances. The accurate prediction of the Dst index plays a pivotal role in mitigating the detrimental effects caused by severe space-weather events. Therefore, Dst prediction has been a long-standing focal point within the realms of space physics and space-weather forecasting. In this study, a Temporal Convolutional Network (TCN) is deployed in tandem with the Integrated Gradient (IG) algorithm to predict the Dst index and scrutinize its associated physical processes. With these two components, our model can give the contribution of each input parameter to the outcome along with the forecast. The TCN component of our model utilizes interplanetary observational data, encompassing the vector magnetic field, solar-wind velocity, proton temperature, proton density, interplanetary electric field, and other relevant parameters for forecasting Dst indices. Despite the disparity in test sets, our model’s forecast accuracy approximates the error levels of the prior models. Remarkably, the prediction error of these machine-learning models has become comparable to the inherent error between the Dst index itself and the actual ring-current strength.

To understand the physical process behind the forecasting model, the IG algorithm was applied in our prediction model, in an attempt to analyze the underlying physical process of the machine-learning black box. In the temporal dimension, it is evident that the more recent the time, the more substantial the influence on the final prediction. Regarding the physical parameters, besides the historical Dst index itself, the flow pressure, the \(z\)-component of the magnetic field, and the proton density all significantly contribute to the final prediction. Additionally, IG attributions were analyzed for subsets of data, including different Dst-index ranges, different observation times, and different interplanetary structures. Most of the subsets exhibit an IG matrix with deviations from the mean distribution, which indicates a complex nonlinear system and sensitivity of the prediction to input values. These analyses align with physical reasoning and are in good agreement with previous research. The results affirm that the TCN+IG technique not only enhances space-weather forecast accuracy but also advances our comprehension of the underlying physical processes in space weather.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Abduallah, Y., Wang, J.T.L., Bose, P., Zhang, G., Gerges, F., Wang, H.: 2022, Forecasting the disturbance storm time index with bayesian deep learning. Int. FLAIRS Conf. Proc. 35. DOI.

  • Akasofu, S.-I.: 1981, Prediction of development of geomagnetic storms using the solar wind-magnetosphere energy coupling function \(\epsilon \). Planet. Space Sci. 29, 1151. DOI.

    Article  ADS  Google Scholar 

  • Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: 2017, Towards Better Understanding of Gradient-Based Attribution Methods for Deep Neural Networks. ArXiv. DOI.

  • Asensio Ramos, A., Cheung, M.C.M., Chifu, I., Gafeira, R.: 2023, Machine learning in solar physics. Living Rev. Solar Phys. 20, 4. DOI.

    Article  ADS  Google Scholar 

  • Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Mueller, K.-R.: 2009, How to Explain Individual Classification Decisions. ArXiv.

  • Bai, S., Kolter, J.Z., Koltun, V.: 2018, An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv [cs].

  • Boynton, R.J., Balikhin, M.A., Billings, S.A., Sharma, A.S., Amariutei, O.A.: 2011, Data derived NARMAX Dst model. Ann. Geophys. 29, 965. DOI.

    Article  ADS  Google Scholar 

  • Branco, P., Torgo, L., Ribeiro, R.: 2015, A Survey of Predictive Modelling under Imbalanced Distributions. ArXiv.

  • Buhrmester, V., Münch, D., Arens, M.: 2021, Analysis of explainers of black box deep neural networks for computer vision: a survey. Mach. Learn. Knowl. Extr. 3, 966. DOI.

    Article  Google Scholar 

  • Burton, R.K., McPherron, R.L., Russell, C.T.: 1975, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 4204. DOI.

    Article  ADS  Google Scholar 

  • Cai, L., Ma, S.Y., Zhou, Y.L.: 2010, Prediction of SYM-H index during large storms by NARX neural network from IMF and solar wind data. Ann. Geophys. 28, 381. DOI.

    Article  ADS  Google Scholar 

  • Chi, Y., Shen, C., Wang, Y., Xu, M., Ye, P., Wang, S.: 2016, Statistical study of the interplanetary coronal mass ejections from 1995 to 2015. Solar Phys. 291, 2419. DOI.

    Article  ADS  Google Scholar 

  • Chi, Y., Shen, C., Luo, B., Wang, Y., Xu, M.: 2018, Geoeffectiveness of stream interaction regions from 1995 to 2016. Adv. Space Res. 16, 1960. DOI.

    Article  Google Scholar 

  • Chi, Y., Shen, C., Scott, C., Xu, M., Owens, M., Wang, Y., Lockwood, M.: 2022, Predictive capabilities of corotating interaction regions using STEREO and wind in-situ observations. Adv. Space Res. 20, e2022SW003112. DOI.

    Article  Google Scholar 

  • Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: 2014, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv [cs].

  • Cliver, E.W., Kamide, Y., Ling, A.G.: 2000, Mountains versus valleys: semiannual variation of geomagnetic activity. J. Geophys. Res. Space Phys. 105, 2413. DOI.

    Article  ADS  Google Scholar 

  • Daly, E.J.: 2005, Outlook on space weather effects on spacecraft. In: Daglis, I.A. (ed.) Effects of Space Weather on Technology Infrastructure 91, Springer, Dordrecht, 978.

    Google Scholar 

  • Dang, T., Li, X., Luo, B., Li, R., Zhang, B., Pham, K., Ren, D., Chen, X., Lei, J., Wang, Y.: 2022, Unveiling the space weather during the starlink satellites destruction event on 4 February 2022. Adv. Space Res. 20, e2022SW003152. DOI.

    Article  Google Scholar 

  • Echer, E., Gonzalez, W.D., Alves, M.V.: 2006, On the geomagnetic effects of solar wind interplanetary magnetic structures. Adv. Space Res. 4, 2005SW000200. DOI.

    Article  Google Scholar 

  • Elman, J.L.: 1990, Finding structure in time. Cogn. Sci. 14, 179. DOI.

    Article  Google Scholar 

  • Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M.K., McComas, D.J., Raouafi, N.E., Szabo, A.: 2016, The solar probe plus mission: humanity’s first visit to our star. Space Sci. Rev. 204, 7. DOI.

    Article  ADS  Google Scholar 

  • Gleisner, H., Lundstedt, H., Wintoft, P.: 1996, Predicting geomagnetic storms from solar-wind data using time-delay neural networks. Ann. Geophys. 14, 679. DOI.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Echer, E.: 2005, A study on the peak dst and peak negative bz relationship during intense geomagnetic storms. Geophys. Res. Lett. 32, 2005GL023486. DOI.

    Article  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. Space Phys. 99, 5771. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Barbieri, L., Cliver, E.W., Lu, G., Plunkett, S.P., Skoug, R.M.: 2005, Introduction to violent Sun-Earth connection events of October–November 2003. J. Geophys. Res. Space Phys. 110, 2005JA011268. DOI.

    Article  Google Scholar 

  • Gruet, M.A., Chandorkar, M., Sicard, A., Camporeale, E.: 2018, Multiple-hour-ahead forecast of the dst index using a combination of long short-term memory neural network and Gaussian process. Adv. Space Res. 16, 1882. DOI.

    Article  Google Scholar 

  • Hapgood, M., Liu, H., Lugaz, N.: 2022, SpaceX—sailing close to the space weather? Adv. Space Res. 20, e2022SW003074. DOI.

    Article  Google Scholar 

  • Harris, C.R., Millman, K.J., Van Der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., Van Kerkwijk, M.H., Brett, M., Haldane, A., Del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: 2020, Array programming with NumPy. Nature 585, 357. DOI.

    Article  ADS  Google Scholar 

  • He, H., Garcia, E.A.: 2009, Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21, 1263. DOI.

    Article  Google Scholar 

  • He, K., Zhang, X., Ren, S., Sun, J.: 2016, Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770, 1063. DOI.

    Chapter  Google Scholar 

  • Heirtzler, J.R., Allen, J.H., Wilkinson, D.C.: 2002, Ever-present South Atlantic anomaly damages spacecraft. Eos Trans. AGU 83, 165. DOI.

    Article  ADS  Google Scholar 

  • Hewage, P., Behera, A., Trovati, M., Pereira, E., Ghahremani, M., Palmieri, F., Liu, Y.: 2020, Temporal Convolutional Neural (TCN) network for an effective weather forecasting using time-series data from the local weather station. Soft Comput. 24, 16453. DOI.

    Article  Google Scholar 

  • Hochreiter, S., Schmidhuber, J.: 1997, Long short-term memory. Neural Comput. 9, 1735. DOI.

    Article  Google Scholar 

  • Hu, A., Camporeale, E., Swiger, B.: 2023, Multi-hour-ahead Dst index prediction using multi-fidelity boosted neural networks. Adv. Space Res. 21, e2022SW003286. DOI.

    Article  Google Scholar 

  • Hunter, J.D.: 2007, Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90. DOI.

    Article  Google Scholar 

  • Hutter, F., Hoos, H.H., Leyton-Brown, K.: 2011, Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization, Lecture Notes in Computer Science 6683, Springer, Berlin, 978. DOI.

    Chapter  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St.Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. DOI.

    Article  ADS  Google Scholar 

  • Kappenman, J.G.: 2005, An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent sun-Earth connection events of 29-31 October 2003 and a comparative evaluation with other contemporary storms. Adv. Space Res. 3, 2004SW000128. DOI.

    Article  Google Scholar 

  • King, J.H., Papitashvili, N.E.: 2005, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J. Geophys. Res. Space Phys. 110, 2004JA010649. DOI.

    Article  Google Scholar 

  • Krawczyk, B.: 2016, Learning from Imbalanced Data: Open Challenges and Future Directions, Lect. Notes. Artif. Int. 5, 221. DOI.

    Book  Google Scholar 

  • Lazzús, J.A., Vega, P., Rojas, P., Salfate, I.: 2017, Forecasting the Dst index using a swarm-optimized neural network: forecasting the Dst index using ANN+PSO. Adv. Space Res. 15, 1068. DOI.

    Article  Google Scholar 

  • Lethy, A., El-Eraki, M.A., Samy, A., Deebes, H.A.: 2018, Prediction of the Dst index and analysis of its dependence on solar wind parameters using neural network. Adv. Space Res. 16, 1277. DOI.

    Article  Google Scholar 

  • Li, Y.Y., Huang, S.Y., Xu, S.B., Yuan, Z.G., Jiang, K., Wei, Y.Y., Zhang, J., Xiong, Q.Y., Wang, Z., Lin, R.T., Yu, L.: 2022, Selection of the main control parameters for the Dst index prediction model based on a layer-wise relevance propagation method. Astron. Astrophys. Suppl. Ser. 260, 6. DOI.

    Article  ADS  Google Scholar 

  • Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: 2020, Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318. DOI.

    Article  Google Scholar 

  • Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, R., Hutter, F.: 2022, SMAC3: a versatile Bayesian optimization package for hyperparameter optimization. J. Mach. Learn. Res. 23, 1.

    Google Scholar 

  • Lühr, H., Maus, S.: 2010, Solar cycle dependence of quiet-time magnetospheric currents and a model of their near-Earth magnetic fields. Earth Planets Space 62, 843. DOI.

    Article  ADS  Google Scholar 

  • Lundstedt, H., Wintoft, P.: 1994, Prediction of geomagnetic storms from solar wind data with the use of a neural network. Ann. Geophys. 12, 19. DOI.

    Article  ADS  Google Scholar 

  • Lundstrom, D.D., Huang, T., Razaviyayn, M.: 2022, A rigorous study of integrated gradients method and extensions to internal neuron attributions. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning, Proceedings of Machine Learning Research 162, PMLR, 14485.

    Google Scholar 

  • Mandea, M., Chambodut, A.: 2020, Geomagnetic field processes and their implications for space weather. Surv. Geophys. 41, 1611. DOI.

    Article  ADS  Google Scholar 

  • Mannucci, A.J., Tsurutani, B.T., Iijima, B.A., Komjathy, A., Saito, A., Gonzalez, W.D., Guarnieri, F.L., Kozyra, J.U., Skoug, R.: 2005, Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “halloween storms”. Geophys. Res. Lett. 32, 2004GL021467. DOI.

    Article  Google Scholar 

  • Microsoft: 2021, Neural Network Intelligence.

  • Molinski, T.S., Feero, W.E., Damsky, B.L.: 2000, Shielding grids from solar storms [power system protection]. IEEE Spectr. 37, 55. DOI.

    Article  Google Scholar 

  • Müller, D., St.Cyr, O.C., Zouganelis, I., Gilbert, H.R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T.S., Howard, R.A., Krucker, S., Maksimovic, M., Owen, C.J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S.K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D.M., Livi, S., Louarn, P., Peter, H., Schühle, U., Teriaca, L., Del Toro Iniesta, J.C., Wimmer-Schweingruber, R.F., Marsch, E., Velli, M., De Groof, A., Walsh, A., Williams, D.: 2020, The solar orbiter mission – science overview. Astron. Astrophys. 642, A1. DOI.

    Article  Google Scholar 

  • Mursula, K., Karinen, A.: 2005, Explaining and correcting the excessive semiannual variation in the Dst index. Geophys. Res. Lett. 32, 2005GL023132. DOI.

    Article  Google Scholar 

  • Nose, M., Sugiura, M., Kamei, T., Iyemori, T., Koyama, Y.: 2015, Dst Index, WDC for Geomagnetism, Kyoto. DOI.

    Book  Google Scholar 

  • Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: 2019, PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, Curran Associates, Red Hook, 8024.

    Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: 2011, Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825.

    MathSciNet  Google Scholar 

  • Perreault, P., Akasofu, S.-I.: 1978, A study of geomagnetic storms. Geophys. J. Int. 54, 547. DOI.

    Article  ADS  Google Scholar 

  • Pulkkinen, A., Bernabeu, E., Eichner, J., Beggan, C., Thomson, A.W.P.: 2012, Generation of 100-year geomagnetically induced current scenarios. Adv. Space Res. 10, 2011SW000750. DOI.

    Article  Google Scholar 

  • Russell, C.T., McPherron, R.L., Burton, R.K.: 1974, On the cause of geomagnetic storms. J. Geophys. Res. 79, 1105. DOI.

    Article  ADS  Google Scholar 

  • Schulte In Den Bäumen, H., Moran, D., Lenzen, M., Cairns, I., Steenge, A.: 2014, How severe space weather can disrupt global supply chains. Nat. Hazards Earth Syst. Sci. 14, 2749. DOI.

    Article  ADS  Google Scholar 

  • Shen, C., Chi, Y., Wang, Y., Xu, M., Wang, S.: 2017, Statistical comparison of the ICME���s geoeffectiveness of different types and different solar phases from 1995 to 2014. J. Geophys. Res. Space Phys. 122, 5931. DOI.

    Article  ADS  Google Scholar 

  • Shen, C., Chi, Y., Xu, M., Wang, Y.: 2021, Origin of Extremely Intense Southward Component of Magnetic Field (Bs) in ICMEs, Aip. Conf. Proc. 9, 762488. DOI.

    Book  Google Scholar 

  • Shrikumar, A., Greenside, P., Kundaje, A.: 2019, Learning Important Features Through Propagating Activation Differences. arXiv [cs].

  • Simonyan, K., Vedaldi, A., Zisserman, A.: 2014, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. ArXiv.

  • Sugiura, M.: 1963, Hourly Values of Equatorial Dst for the Igy. Technical Report NASA-TM-X-55238.

  • Sugria, M., Chapman, S.: 1961, The average morphology of geomagnetic storms with sudden commencement. Abhandl, Akad, Wiss, Goettingen Math, Phys., Kl 4, 1.

    Google Scholar 

  • Sundararajan, M., Taly, A., Yan, Q.: 2017, Axiomatic Attribution for Deep Networks. arXiv [cs].

  • Temerin, M., Li, X.: 2015, The dst index underestimates the solar cycle variation of geomagnetic activity. J. Geophys. Res. Space Phys. 120, 5603. DOI.

    Article  ADS  Google Scholar 

  • The pandas development team: 2020, Pandas-Dev/Pandas: Pandas, Zenodo. DOI.

  • Tsurutani, B.T., Gonzalez, W.D., Kamide, Y., Arballo, J.K.: 1997, Preface. In: Tsurutani, B.T., Gonzalez, W.D., Kamide, Y., Arballo, J.K. (eds.) Geophysical Monograph Series 98, American Geophysical Union, Washington, 978. DOI.

    Chapter  Google Scholar 

  • Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Van Der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., Van Mulbregt, P., SciPy 1.0 Contributors, Vijaykumar, A., Bardelli, A.P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.-L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., De Miranda Cardoso, J.V., Reimer, J., Harrington, J., Rodríguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y. (eds.): 2020, SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261. DOI.

    Article  Google Scholar 

  • Wang, Y., Shen, C.L., Wang, S., Ye, P.Z.: 2003, An empirical formula relating the geomagnetic storm’s intensity to the interplanetary parameters: – and \(\Delta \) t. Geophys. Res. Lett. 30, 2003GL017901. DOI.

    Article  Google Scholar 

  • Wang, Y., Ye, P., Zhou, G., Wang, S., Wang, S., Yan, Y., Wang, J.: 2005, The interplanetary responses to the great solar activities in late October 2003. Solar Phys. 226, 337. DOI.

    Article  ADS  Google Scholar 

  • Wang, Y., Bai, X., Chen, C., Chen, L., Cheng, X., Deng, L., Deng, L., Deng, Y., Feng, L., Gou, T., Guo, J., Guo, Y., Hao, X., He, J., Hou, J., Huang, J., Huang, Z., Ji, H., Jiang, C., Jiang, J., Jin, C., Li, X., Li, Y., Liu, J., Liu, K., Liu, L., Liu, R., Liu, R., Qiu, C., Shen, C., Shen, F., Shen, Y., Shi, X., Su, J., Su, Y., Su, Y., Sun, M., Tan, B., Tian, H., Wang, Y., Xia, L., Xie, J., Xiong, M., Xu, M., Yan, X., Yan, Y., Yang, S., Yang, S., Zhang, S., Zhang, Q., Zhang, Y., Zhao, J., Zhou, G., Zou, H.: 2023, Solar ring mission: building a panorama of the sun and inner-heliosphere. Adv. Space Res. 71, 1146. DOI.

    Article  ADS  Google Scholar 

  • Wei, H.L., Zhu, D.Q., Billings, S.A., Balikhin, M.A.: 2007, Forecasting the geomagnetic activity of the Dst index using multiscale radial basis function networks. Adv. Space Res. 40, 1863. DOI.

    Article  ADS  Google Scholar 

  • Wolpert, D.H.: 1992, Stacked generalization. Neural Netw. 5, 241. DOI.

    Article  Google Scholar 

  • Wu, J.-G., Lundstedt, H.: 1997, Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks. J. Geophys. Res. Space Phys. 102, 14255. DOI.

    Article  ADS  Google Scholar 

  • Xu, S.B., Huang, S.Y., Yuan, Z.G., Deng, X.H., Jiang, K.: 2020, Prediction of the Dst index with bagging ensemble-learning algorithm. Astrophys. J. Suppl. 248, 14. DOI.

    Article  ADS  Google Scholar 

  • Yang, Y., Zha, K., Chen, Y.-C., Wang, H., Katabi, D.: 2021, Delving into deep imbalanced regression. In: International Conference on Machine Learning (ICML).

    Google Scholar 

  • Yang, Y., Liu, J.J., Feng, X.S., Chen, P.F., Zhang, B.: 2023, Prediction of the transit time of coronal mass ejections with an ensemble machine-learning method. Astrophys. J. Suppl. 268, 69. DOI.

    Article  ADS  Google Scholar 

  • Yermolaev, Y.I., Yermolaev, M.Y.: 2002, Statistical relationships between solar, interplanetary, and geomagnetospheric disturbances, 1976–2000. Cosm. Res. 40, 1. DOI.

    Article  ADS  Google Scholar 

  • Zhang, J., Feng, Y., Zhang, J., Li, Y.: 2023, The short time prediction of the dst index based on the long-short time memory and empirical mode decomposition–long-short time memory models. Appl. Sci. 13, 11824. DOI.

    Article  Google Scholar 

  • Zhao, H., Zong, Q., Wei, Y., Wang, Y.: 2011, Influence of solar wind dynamic pressure on geomagnetic Dst index during various magnetic storms. Sci. China, Technol. Sci. 54, 1445. DOI.

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by grants from the NSFC (42325405, 42130204, 41904151, 42188101, 42074222) and the Strategic Priority Program of the Chinese Academy of Sciences (XDB41000000).

Author information

Authors and Affiliations

Authors

Contributions

Junyan Liu and Chenglong Shen wrote the main manuscript. Yang Wang, Mengjiao Xu, Yutian Chi, Zhihui Zhong, Dongwei Mao, Can Wang, Jiajia Liu, and Yuming Wang contributed to the discussions and offered revision suggestions.

Corresponding authors

Correspondence to Junyan Liu or Chenglong Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Shen, C., Wang, Y. et al. Forecasting the Dst Index with Temporal Convolutional Network and Integrated Gradients. Sol Phys 299, 98 (2024). https://doi.org/10.1007/s11207-024-02340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-024-02340-9

Keywords

Navigation