Skip to main content
Log in

High-Resolution Observation of Blowout Jets Regulated by Sunspot Rotation

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Coronal jets are believed to be the miniature version of large-scale solar eruptions. In particular, the eruption of a minifilament inside the base arch is suggested to be the trigger and even driver of blowout jets. Here, we propose an alternative triggering mechanism, based on high-resolution H\(\alpha \) observations of a blowout jet associated with a minifilament and an M1.2-class flare. The minifilament remains largely stationary during the blowout jet, except that it is straddled by flare loops connecting two flare ribbons, indicating that the magnetic arcade embedding the minifilament has been torn into two parts, with the upper part escaping with the blowout jet. In the wake of the flare, the southern end of the minifilament fans out like neighboring fibrils, indicative of mass and field exchanges between the minifilament and the fibrils. The blowout jet is preceded by a standard jet. With H\(\alpha \) fibrils moving toward the single-strand spire in a sweeping fashion, the standard jet transitions to the blowout jet. A similar pattern of standard-to-blowout jet transition occurs in an earlier C-class flare before the minifilament forms. The spiraling morphology and sweeping direction of these fibrils are suggestive of their footpoints being dragged by the leading sunspot that undergoes clockwise rotation for over two days. Soon after the sunspot rotation reaches a peak angular speed as fast as 10 deg h−1, the dormant active region becomes flare productive, and the minifilament forms through the interaction of moving magnetic features from the rotating sunspot with satellite spots/pores. Hence, we suggest that the sunspot rotation plays a key role in building up free energy for flares and jets and in triggering blowout jets by inducing sweeping motions of fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data Availability

The solar data used in the study are publicly available for download from the mission archives. The SDO data are available at http://jsoc.stanford.edu/. The NVST data are available at https://fso.ynao.ac.cn/DataService/query. The STIX data are available at https://datacenter.stix.i4ds.net/. The HXI data used in this study are during the mission commissioning phase and are available upon reasonable request, and the data after April 2023 are publicly available for download at http://aso-s.pmo.ac.cn/sodc/dataArchive.jsp.

References

  • Berger, M.A.: 1984, Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bi, Y., Jiang, Y., Yang, J., Hong, J., Li, H., Yang, B., Xu, Z.: 2016, Observation of a reversal of rotation in a sunspot during a solar flare. Nat. Commun. 7, 13798. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brown, D.S., Nightingale, R.W., Alexander, D., Schrijver, C.J., Metcalf, T.R., Shine, R.A., Title, A.M., Wolfson, C.J.: 2003, Observations of rotating sunspots from TRACE. Solar Phys. 216, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chandra, R., Mandrini, C.H., Schmieder, B., Joshi, B., Cristiani, G.D., Cremades, H., Pariat, E., Nuevo, F.A., Srivastava, A.K., Uddin, W.: 2017, Blowout jets and impulsive eruptive flares in a bald-patch topology. Astron. Astrophys. 598, A41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gan, W.-Q., Zhu, C., Deng, Y.-Y., Li, H., Su, Y., Zhang, H.-Y., Chen, B., Zhang, Z., Wu, J., Deng, L., Huang, Y., Yang, J.-F., Cui, J.-J., Chang, J., Wang, C., Wu, J., Yin, Z.-S., Chen, W., Fang, C., Yan, Y.-H., Lin, J., Xiong, W.-M., Chen, B., Bao, H.-C., Cao, C.-X., Bai, Y.-P., Wang, T., Chen, B.-L., Li, X.-Y., Zhang, Y., Feng, L., Su, J.-T., Li, Y., Chen, W., Li, Y.-P., Su, Y.-N., Wu, H.-Y., Gu, M., Huang, L., Tang, X.-J.: 2019, Advanced space-based solar observatory (ASO-S): an overview. Res. Astron. Astrophys. 19, 156. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Fan, Y.: 2006, The partial expulsion of a magnetic flux rope. Astrophys. J. Lett. 637, L65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gilbert, H.R., Alexander, D., Liu, R.: 2007, Filament kinking and its implications for eruption and re-formation. Solar Phys. 245, 287. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krucker, S., Hurford, G.J., Grimm, O., Kögl, S., Gröbelbauer, H.-P., Etesi, L., Casadei, D., Csillaghy, A., Benz, A.O., Arnold, N.G., Molendini, F., Orleanski, P., Schori, D., Xiao, H., Kuhar, M., Hochmuth, N., Felix, S., Schramka, F., Marcin, S., Kobler, S., Iseli, L., Dreier, M., Wiehl, H.J., Kleint, L., Battaglia, M., Lastufka, E., Sathiapal, H., Lapadula, K., Bednarzik, M., Birrer, G., Stutz, S., Wild, C., Marone, F., Skup, K.R., Cichocki, A., Ber, K., Rutkowski, K., Bujwan, W., Juchnikowski, G., Winkler, M., Darmetko, M., Michalska, M., Seweryn, K., Białek, A., Osica, P., Sylwester, J., Kowalinski, M., Ścisłowski, D., Siarkowski, M., Steślicki, M., Mrozek, T., Podgórski, P., Meuris, A., Limousin, O., Gevin, O., Le Mer, I., Brun, S., Strugarek, A., Vilmer, N., Musset, S., Maksimović, M., Fárník, F., Kozáček, Z., Kašparová, J., Mann, G., Önel, H., Warmuth, A., Rendtel, J., Anderson, J., Bauer, S., Dionies, F., Paschke, J., Plüschke, D., Woche, M., Schuller, F., Veronig, A.M., Dickson, E.C.M., Gallagher, P.T., Maloney, S.A., Bloomfield, D.S., Piana, M., Massone, A.M., Benvenuto, F., Massa, P., Schwartz, R.A., Dennis, B.R., van Beek, H.F., Rodríguez-Pacheco, J., Lin, R.P.: 2020, The spectrometer/telescope for imaging X-rays (STIX). Astron. Astrophys. 642, A15. DOI. ADS.

    Article  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, R.: 2020, Magnetic flux ropes in the solar corona: structure and evolution toward eruption. Res. Astron. Astrophys. 20, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, R., Alexander, D., Gilbert, H.R.: 2007, Kink-induced catastrophe in a coronal eruption. Astrophys. J. 661, 1260. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y., Schuck, P.W.: 2012, Magnetic energy and helicity in two emerging active regions in the sun. Astrophys. J. 761, 105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Z., Xu, J., Gu, B.-Z., Wang, S., You, J.-Q., Shen, L.-X., Lu, R.-W., Jin, Z.-Y., Chen, L.-F., Lou, K., Li, Z., Liu, G.-Q., Xu, Z., Rao, C.-H., Hu, Q.-Q., Li, R.-F., Fu, H.-W., Wang, F., Bao, M.-X., Wu, M.-C., Zhang, B.-R.: 2014, New vacuum solar telescope and observations with high resolution. Res. Astron. Astrophys. 14, 705. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, R., Kliem, B., Titov, V.S., Chen, J., Wang, Y., Wang, H., Liu, C., Xu, Y., Wiegelmann, T.: 2016, Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. Astrophys. J. 818, 148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II—magnetic structure and dynamics. Space Sci. Rev. 151, 333. DOI. ADS.

    Article  ADS  Google Scholar 

  • Massa, P., Piana, M., Massone, A.M., Benvenuto, F.: 2019, Count-based imaging model for the spectrometer/telescope for imaging X-rays (STIX) in solar orbiter. Astron. Astrophys. 624, A130. DOI. ADS.

    Article  ADS  Google Scholar 

  • Massa, P., Schwartz, R., Tolbert, A.K., Massone, A.M., Dennis, B.R., Piana, M., Benvenuto, F.: 2020, MEM_GE: a new maximum entropy method for image reconstruction from solar X-ray visibilities. Astrophys. J. 894, 46. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moore, R.L., Cirtain, J.W., Sterling, A.C., Falconer, D.A.: 2010, Dichotomy of solar coronal jets: standard jets and blowout jets. Astrophys. J. 720, 757. DOI. ADS.

    Article  ADS  Google Scholar 

  • Müller, D., St. Cyr, O.C., Zouganelis, I., Gilbert, H.R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T.S., Howard, R.A., Krucker, S., Maksimovic, M., Owen, C.J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S.K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D.M., Livi, S., Louarn, P., Peter, H., Schühle, U., Teriaca, L., del Toro Iniesta, J.C., Wimmer-Schweingruber, R.F., Marsch, E., Velli, M., De Groof, A., Walsh, A., Williams, D.: 2020, The solar orbiter mission. Science overview. Astron. Astrophys. 642, A1. DOI. ADS.

    Article  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The solar dynamics observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Raouafi, N.E., Patsourakos, S., Pariat, E., Young, P.R., Sterling, A.C., Savcheva, A., Shimojo, M., Moreno-Insertis, F., DeVore, C.R., Archontis, V., Török, T., Mason, H., Curdt, W., Meyer, K., Dalmasse, K., Matsui, Y.: 2016, Solar coronal jets: observations, theory, and modeling. Space Sci. Rev. 201, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sakaue, T., Tei, A., Asai, A., Ueno, S., Ichimoto, K., Shibata, K.: 2017, Observational study on the fine structure and dynamics of a solar jet. I. Energy build-up process around a satellite spot. Publ. Astron. Soc. Japan 69, 80. DOI.

    Article  ADS  Google Scholar 

  • Saqri, J., Veronig, A.M., Battaglia, A.F., Dickson, E.C.M., Gary, D.E., Krucker, S.: 2024, Efficiency of solar microflares in accelerating electrons when rooted in a sunspot. Astron. Astrophys. 683, A41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Phys. 275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schmieder, B., Guo, Y., Moreno-Insertis, F., Aulanier, G., Yelles Chaouche, L., Nishizuka, N., Harra, L.K., Thalmann, J.K., Vargas Dominguez, S., Liu, Y.: 2013, Twisting solar coronal jet launched at the boundary of an active region. Astron. Astrophys. 559, A1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schuck, P.W.: 2008, Tracking vector magnetograms with the magnetic induction equation. Astrophys. J. 683, 1134. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y.: 2021, Observation and modelling of solar jets. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 477, 217. DOI. ADS.

    Article  Google Scholar 

  • Sterling, A.C., Moore, R.L., Falconer, D.A., Adams, M.: 2015, Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes. Nature 523, 437. DOI. ADS.

    Article  ADS  Google Scholar 

  • Su, Y., Liu, W., Li, Y.-P., Zhang, Z., Hurford, G.J., Chen, W., Huang, Y., Li, Z.-T., Jiang, X.-K., Wang, H.-X., Xia, F.-X.-Y., Chen, C.-X., Yu, W.-H., Yu, F., Wu, J., Gan, W.-Q.: 2019, Simulations and software development for the hard X-ray imager onboard ASO-S. Res. Astron. Astrophys. 19, 163. DOI. ADS.

    Article  ADS  Google Scholar 

  • Su, Y., Zhang, Z., Chen, D., Hu, Y., Zhang, Y., Jiang, X., et al.: 2024, The tests and calibrations of the Hard X-ray Imager onboard ASO-S. Solar Phys., submitted.

  • Tian, L., Alexander, D., Nightingale, R.: 2008, Origins of coronal energy and helicity in NOAA 10030. Astrophys. J. 684, 747. DOI. ADS.

    Article  ADS  Google Scholar 

  • Titov, V.S., Hornig, G., Démoulin, P.: 2002, Theory of magnetic connectivity in the solar corona. J. Geophys. Res. Space Phys. 107, 1164. DOI. ADS.

    Article  ADS  Google Scholar 

  • Titov, V.S., Priest, E.R., Demoulin, P.: 1993, Conditions for the appearance of “bald patches” at the solar surface. Astron. Astrophys. 276, 564. ADS.

    ADS  Google Scholar 

  • Toriumi, S., Wang, H.: 2019, Flare-productive active regions. Living Rev. Solar Phys. 16, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Török, T., Temmer, M., Valori, G., Veronig, A.M., van Driel-Gesztelyi, L., Vršnak, B.: 2013, Initiation of coronal mass ejections by sunspot rotation. Solar Phys. 286, 453. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tripathi, D., Gibson, S.E., Qiu, J., Fletcher, L., Liu, R., Gilbert, H., Mason, H.E.: 2009, Partially-erupting prominences: a comparison between observations and model-predicted observables. Astron. Astrophys. 498, 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, J., Li, W., Denker, C., Lee, C., Wang, H., Goode, P.R., McAllister, A., Martin, S.F.: 2000, Minifilament eruption on the quiet sun. I. Observations at H\(\alpha\) central line. Astrophys. J. 530, 1071. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Inhester, B., Kliem, B., Valori, G., Neukirch, T.: 2006, Testing non-linear force-free coronal magnetic field extrapolations with the Titov-Démoulin equilibrium. Astron. Astrophys. 453, 737. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wyper, P.F., DeVore, C.R., Antiochos, S.K.: 2019, Numerical simulation of helical jets at active region peripheries. Mon. Not. Roy. Astron. Soc. 490, 3679. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yan, X.L., Qu, Z.Q.: 2007, Rapid rotation of a sunspot associated with flares. Astron. Astrophys. 468, 1083. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yang, Y.-H., Cheng, C.Z., Krucker, S., Hsieh, M.-S., Chen, N.-H.: 2012, Asymmetry of hard X-ray emissions at conjugate footpoints in solar flares. Astrophys. J. 756, 42. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, J., Li, L., Song, Q.: 2007, Interaction between a fast rotating sunspot and ephemeral regions as the origin of the major solar event on 2006 December 13. Astrophys. J. Lett. 662, L35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Z., Chen, D.-Y., Wu, J., Chang, J., Hu, Y.-M., Su, Y., Zhang, Y., Wang, J.-P., Liang, Y.-M., Ma, T., Guo, J.-H., Cai, M.-S., Zhang, Y.-Q., Huang, Y.-Y., Peng, X.-Y., Tang, Z.-B., Zhao, X., Zhou, H.-H., Wang, L.-G., Song, J.-X., Ma, M., Xu, G.-Z., Yang, J.-F., Lu, D., He, Y.-H., Tao, J.-Y., Ma, X.-L., Lv, B.-G., Bai, Y.-P., Cao, C.-X., Huang, Y., Gan, W.-Q.: 2019, Hard X-ray imager (HXI) onboard the ASO-S mission. Res. Astron. Astrophys. 19, 160. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Funding

R.L. and Y.S. acknowledge the support from the National Key R&D Program of China 2022YFF0503002. R.L., H.P., and R.B.L. acknowledge the support by NSFC (11925302, 42188101, and 42274204) and by the Strategic Priority Program of the Chinese Academy of Sciences (XDB41000000). Y.S. and W.G. also acknowledge the support by NSFC (12333010, 11820101002, 11921003, and 12233012) and by the Strategic Priority Research Program of the Chinese Academy of Science (Grant No. XDB0560000). A.M.V acknowledges support by the Austrian Science Fund (FWF) 10.55776/I4555.

Author information

Authors and Affiliations

Authors

Contributions

T.G. and R.L. led the study, performed the analysis, and wrote the manuscript. Y.S. provided and analyzed the HXI data and contributed to the discussion. A.M.V. contributed to the interpretation and discussion. H.P. contributed to the STIX data analysis. R.B.L contributed to the NVST observation and data. W.G. is the PI of ASO-S mission and contributed to the discussion. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tingyu Gou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below are the links to the electronic supplementary material.

(MP4 30.1 MB)

(MP4 11.6 MB)

(MP4 7.6 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, T., Liu, R., Su, Y. et al. High-Resolution Observation of Blowout Jets Regulated by Sunspot Rotation. Sol Phys 299, 99 (2024). https://doi.org/10.1007/s11207-024-02333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-024-02333-8

Keywords

Navigation