Skip to main content
Log in

The Polar Field Reversal Process over Five Solar Cycles

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We examine the process during which the solar magnetic field reverses polarity around each solar maximum. We use the McIntosh Archive (McA) of solar synoptic maps over five consecutive solar cycles, SCs 19 – 23, or from 1955 to 2009. This data set allows us to track features such as filaments, polarity inversion lines (PILs), coronal hole (CH) boundaries, and sunspots over many consecutive Carrington rotations (CRs) and solar cycles (SCs). The McA allows tracking of the evolution of the polar magnetic regions and how the rush-to-the-pole (RttP) patterns occur during the period when the polar fields reverse around each activity maximum. We use the McA dataset to determine the timing and lags among these events around the maximum of each SC in each hemisphere: the sunspot number peak, the polarity reversal, the disappearance of the polar crown filaments and PILs, the poleward movement of midlatitude CHs of new-cycle polarity behind the primary PIL, the first appearance of polar CHs of new-cycle polarity, and the earliest persistent complete coverage of each pole by a CH. The goal is to use the RttPs and CH boundary mapping to better constrain solar interior and dynamo models. The end of the PIL RttP, the end of the RttP of the poleward boundary of new-cycle polarity midlatitude CHs, and the first appearance of new-cycle polar CHs are nearly coincident and follow the polarity reversals in each hemisphere by about 1 year. We also show the lag times relative to “terminator” times, which denote when the toroidal magnetic flux built during a given cycle is canceled across the equator, thus beginning the rise of new-cycle flux. This occurs after the start of the RttPs of the polar CH boundaries and near the start of the primary and secondary PIL RttPs. The start of the RttP of the poleward boundary of the new-cycle, midlatitude CH that leads to the new polar CH always occurs later than the terminator time, so the terminator is located near the beginning of the ascending phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI.

    Article  ADS  Google Scholar 

  • Charbonneau, P.: 2020, Dynamo models of the solar cycle. Living Rev. Solar Phys. 17, 4. DOI.

    Article  ADS  Google Scholar 

  • Chatterjee, S., Hegde, M., Banerjee, D., Ravindra, B.: 2017, Long term study of the solar filaments from the synoptic maps as derived from H\(\alpha \) spectroheliograms of Kodaikanal Observatory. Astrophys. J. 849, 44. DOI.

    Article  ADS  Google Scholar 

  • Cliver, E.W.: 2014, The extended cycle of solar activity and the Sun’s 22-year magnetic cycle. Space Sci. Rev. 186, 169. DOI.

    Article  ADS  Google Scholar 

  • Dikpati, M., Gilman, P.A.: 2001, Flux-transport dynamos with \(\alpha \)-effect from global instability of tachocline differential rotation: a solution for magnetic parity selection in the Sun. Astrophys. J. 559, 428. DOI.

    Article  ADS  Google Scholar 

  • Dikpati, M., McIntosh, S.W.: 2020, Space weather challenge and forecasting implications of Rossby waves. Space Weather 18, e2018SW002109. DOI.

    Article  ADS  Google Scholar 

  • Dikpati, M., Gilman, P.A., Chatterjee, S., McIntosh, S.W., Zaqarashvili, T.V.: 2020, Physics of magnetohydrodynamic Rossby waves in the Sun. Astrophys. J. 896, 141. DOI.

    Article  ADS  Google Scholar 

  • Emery, B.A., Webb, D.F., Gibson, S.E., Hewins, I.M., McFadden, R.H., Kuchar, T.A.: 2021, Latitude variations in primary and secondary polar crown polarity inversion lines and polar coronal hole boundaries over five solar cycles. Solar Phys. 296, 119. DOI.

    Article  ADS  Google Scholar 

  • Gibson, S., Webb, D., Hewins, I., McFadden, R., Emery, B., Denig, W., et al.: 2017, Beyond sunspots: studies using the McIntosh archive of global solar magnetic field patterns. In: Nandy, E.D., Valio, A., Petit, P. (eds.) Living Around Active Stars, Proceedings IAU Symposium No. 328, Cambridge University Press, Cambridge, 93.

    Google Scholar 

  • Harris, J., Dikpati, M., Hewins, I.M., Gibson, S.E., McIntosh, S.W., Chatterjee, S., Kuchar, T.A.: 2022, Tracking movement of long-lived equatorial coronal holes from analysis of long-term McIntosh archive data. Astrophys. J. 931, 54. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Upton, L.A.: 2021, Hydrodynamic properties of the Sun’s giant cellular flows. Astrophys. J. 908, 160. DOI.

    Article  ADS  Google Scholar 

  • Hewins, I.M., Gibson, S.E., Webb, D.F., McFadden, R.H., Kuchar, T.A., Emery, B.A., McIntosh, S.W.: 2020, The evolution of coronal holes over three solar cycles using the McIntosh archive. Solar Phys. 295, 161. DOI.

    Article  ADS  Google Scholar 

  • Hewins, I.M., Gibson, S.E., Webb, D.F., McFadden, R.H., Kuchar, T.A., Emery, B.A.: 2023, Comparative solar minima using the McIntosh archive. J. Geophys. Res. 128, 7. DOI.

    Article  Google Scholar 

  • Howe, R.: 2016, Solar interior structure and dynamics. Asian J. Phys. 25, 311. ADS.

    ADS  Google Scholar 

  • Hyder, C.L.: 1965, The “polar crown” of filaments and the Sun’s polar magnetic fields. Astrophys. J. 141, 272. DOI.

    Article  ADS  Google Scholar 

  • Leamon, R.J., McIntosh, S.W., Title, A.M.: 2022, Deciphering solar magnetic activity: the solar cycle clock. Front. Astron. Space Sci. 9, 886670. DOI.

    Article  ADS  Google Scholar 

  • Leighton, R.B.: 1964, Transport of magnetic fields on the Sun. Astrophys. J. 140, 1547. DOI.

    Article  ADS  Google Scholar 

  • Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI.

    Article  ADS  Google Scholar 

  • Makarov, V.I., Sivaraman, K.R.: 1986, Atlas of H-alpha synoptic charts for solar cycle 19 (1955 – 1964; Carrington solar rotations 1355 to 1486. Kodiakanal Obs. Bull. 7, 2.

    Google Scholar 

  • Maunder, E.W.: 1904, Note on the distribution of sun-spots in heliographic latitude, 1874-1902. Mon. Not. Roy. Astron. Soc. 64, 747. DOI.

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 1979, Annotated Atlas of H-Alpha Synoptic Charts for Solar Cycle 20 (1964 – 1974) Carrington Solar Rotations 1487 – 1616, \(UAG-70\), World Data Center a for Solar-Terrestrial Physics, NOAA Space Environment Laboratory, Boulder.

    Google Scholar 

  • McIntosh, P.S.: 2003, Patterns and dynamics of solar magnetic fields and He-I coronal holes in cycle 23. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment, ESA SP-535. ESTEC, Noordwijk, 807.

    Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Egeland, R.: 2023, Deciphering solar magnetic activity: the (solar) Hale cycle terminator of 2021. Front. Astron. Space Sci. 10. DOI.

  • McIntosh, S.W., Wang, X., Leamon, R.J., Davey, A.R., Howe, R., Krista, L.D., Malanushenko, A.V., Markel, R.S., Cirtain, J.W., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014, Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. 792, 12. DOI.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Egeland, R., Dikpati, M., Fan, Y., Rempel, M.: 2019, What the sudden death of solar cycles can tell us about the nature of the solar interior. Solar Phys. 294, 88. DOI.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Scherrer, P.H., Svalgaard, L., Leamon, R.J.: 2022, Uniting the Sun’s Hale magnetic cycle and “extended solar cycle” paradigms. Front. Astron. Space Sci. 9, 923049. DOI.

    Article  ADS  Google Scholar 

  • Mordvinov, A.V., Yazev, S.A.: 2014, Reversals of the Sun’s polar magnetic fields in relation to activity complexes and coronal holes. Solar Phys. 289, 1971. DOI.

    Article  ADS  Google Scholar 

  • Petrie, G.J.D.: 2015, Solar magnetism in the polar regions. Living Rev. Solar Phys. 12, 5. DOI.

    Article  ADS  Google Scholar 

  • Petrie, G.J.D.: 2023, Polar photospheric magnetic field evolution and global flux transport. Solar Phys. 298, 43. DOI.

    Article  ADS  Google Scholar 

  • Pishkalo, M.I.: 2019, On polar magnetic field reversal in solar cycles 21, 22, 23, and 24. Solar Phys. 294, 137. DOI.

    Article  ADS  Google Scholar 

  • Snodgrass, H.B.: 1983, Magnetic rotation of the solar photosphere. Astrophys. J. 270, 288. DOI.

    Article  ADS  Google Scholar 

  • Vernova, E.S., Tyasto, M.I., Baranov, D.G.: 2023, Ripples and rush-to-the-poles in the photospheric magnetic field. Solar Phys. 298, 69. DOI.

    Article  ADS  Google Scholar 

  • Veronig, A.M., Jain, S., Podladchikova, T., Pötzi, W., Clette, F.: 2021, Hemispheric sunspot numbers 1874 – 2020. Astron. Astrophys. 652, A56. DOI.

    Article  ADS  Google Scholar 

  • Waldmeier, M.: 1981, Cyclic variations of the polar coronal hole. Solar Phys. 70, 251. DOI.

    Article  ADS  Google Scholar 

  • Wang, Y.-M.: 2017, Surface flux transport and the evolution of the Sun’s polar fields. Space Sci. Rev. 210, 351. DOI.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr., Nash, A.G.: 1991, A new solar cycle model including meridional circulation. Astrophys. J. 383, 431. DOI.

    Article  ADS  Google Scholar 

  • Webb, D.F., Davis, J.M., McIntosh, P.S.: 1984, Observations of the reappearance of polar coronal holes and the reversal of the polar magnetic field. Solar Phys. 92, 109. DOI.

    Article  ADS  Google Scholar 

  • Webb, D.F., Gibson, S.E., Hewins, I.M., McFadden, R.H., Emery, B.A., Malanushenko, A., Kuchar, T.A.: 2018, Global solar magnetic field evolution over 4 solar cycles: use of the McIntosh archive. Front. Astron. Space Sci. 5, 23. DOI.

    Article  ADS  Google Scholar 

  • Xu, Y., Pötzi, W., Zhang, H., Huang, N., Jing, J., Wang, H.: 2018, Collective study of polar crown filaments in the past four solar cycles. Astrophys. J. Lett. 862, L23. DOI.

    Article  ADS  Google Scholar 

  • Xu, Y., Banerjee, D., Chatterjee, S., Pötzi, W., Wang, Z., Ruan, X., Jing, J., Wang, H.: 2021, Migration of solar polar crown filaments in the past 100 years. Astrophys. J. 909, 86. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was made possible by the pioneering work of Patrick McIntosh, who passed away in October 2016. This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. The work of the authors was supported by NSF RAPID grant 1540544 and NSF grants 1722727 and 2035710. The McIntosh Archive is publicly available at https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-imagery/composites/synoptic-maps/mc-intosh/. Information about the McIntosh Archive and access to the data set is available at: https://www2.hao.ucar.edu/mcintosh-archive/four-cycles-solar-synoptic-maps.

Author information

Authors and Affiliations

Authors

Contributions

D.W. wrote the main manuscript text and B.E. helped prepare or update all four figures and the two tables. D.W. and B.E. reviewed and updated the main text. B. E. and T. K. assisted with computer analyses. All authors reviewed the manuscript.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, D.F., Emery, B.A., Gibson, S.E. et al. The Polar Field Reversal Process over Five Solar Cycles. Sol Phys 299, 27 (2024). https://doi.org/10.1007/s11207-024-02273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-024-02273-3

Navigation