Skip to main content

Advertisement

Log in

Latitude Variations in Primary and Secondary Polar Crown Polarity Inversion Lines and Polar Coronal Hole Boundaries over Five Solar Cycles

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We undertake a five solar-cycle (SC 19 - 23) ≈55-year (December 1954 to August 2009) study of the high latitude polarity inversion lines (PILs) using the recently digitized McIntosh Archive (McA) of solar synoptic (Carrington) maps. We looked at the evolution of the median solar latitudes of primary and secondary PILs, and of the polar coronal hole (CH) boundary for all 732 Carrington Rotations (CRs). We found hemispheric differences in the “Rush to the Poles” (RttP) where the polar CH gaps are often longer in the southern hemisphere (SH), and the secondary PIL reaches its polemost latitude at the end of its RttP later and more poleward than in the northern hemisphere (NH). The latitude oscillations found after this poleward peak are also stronger and often longer in the SH than in the NH, and exhibit a 22-year variation. The location variations in the CH boundaries and PILs appear to be at least partly associated with similar variations in the magnetic field. We also found equatorward expansions of the polar CHs by ≈50% and equatorward shifts in the PILs that were part of a disturbance that propagated ≈15°/CR from the SH to the NH in the descending phase of SC 23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Altrock, R.C.: 2003a, A study of the rotation of the solar corona. Solar Phys. 213, 23. DOI.

    Article  ADS  Google Scholar 

  • Altrock, R.C.: 2003b, Use of ground-based coronal data to predict the date of the solar cycle maximum. Solar Phys. 216, 343. DOI.

    Article  ADS  Google Scholar 

  • Altrock, R.C.: 2014, Forecasting the maxima of solar cycle 24 with coronal Fe XIV emission. Solar Phys. 289, 623. DOI.

    Article  ADS  Google Scholar 

  • Babcock, H.D.: 1959, The Sun’s polar magnetic field. Solar Phys. 130, 364. DOI.

    Article  Google Scholar 

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI.

    Article  ADS  Google Scholar 

  • Balthasar, H., Schüssler, M.: 1983, Preferred longitudes of sunspot groups and high-speed solar wind streams: Evidence for a ‘solar memory’. Solar Phys. 87, 23. DOI.

    Article  ADS  Google Scholar 

  • Bohlin, J.D., Hulburt, E.O.: 1977, An observational definition of coronal holes. In: Zirker, B.J. (ed.) Coronal Holes and High Speed Wind Streams: A Monograph from Skylab Solar Workshop I, Colorado Associated University Press, Boulder, 27. Chapter 2.

    Google Scholar 

  • Bohlin, J.D., Rubenstein, D.M.: 1975, Synoptic maps of solar coronal hole boundaries derived from He 304A spectroheliograms from the manned Skylab missions. Report UAG-51, World Data Center A for Solar-Terrestrial Physics, NOAA.

  • Chatterjee, S., Hegde, M., Banerjee, D., Ravindra, B.: 2017, Long term study of the solar filaments from the synoptic maps as derived from H\(\alpha \) spectroheliograms of Kodaikanal Observatory. Astrophys. J. 849, 44. DOI.

    Article  ADS  Google Scholar 

  • de Toma, G.: 2011, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Solar Phys. 274, 195. DOI.

    Article  ADS  Google Scholar 

  • Dikpati, M., Gilman, P.A.: 2001, Flux-transport dynamos with \(\alpha \)-effect from global instability of tachocline differential rotation: A solution for magnetic parity selection in the Sun. Astrophys. J. 559, 428. DOI.

    Article  ADS  Google Scholar 

  • Dikpati, M., McIntosh, S.W.: 2020, Space weather challenge and forecasting implications of Rossby waves. Space Weather 18(3), e02109. DOI.

    Article  Google Scholar 

  • Gibson, S., Webb, D., Hewins, I., McFadden, R., Emery, B., Denig, W., McIntosh, P.: 2017, Beyond sunspots: Studies using the McIntosh archive of global solar magnetic field patterns. In: Nandy, D., Valio, A., Petit, P. (eds.) Living Around Active Stars, Proceedings IAU Symposium 328, Cambridge University Press, Cambridge, 93. DOI.

    Chapter  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Akiyama, S.: 2016, Unusual polar conditions in solar cycle 24 and their implications for cycle 25. Astrophys. J. Lett. 823, L15. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 1996, Doppler measurements of the Sun’s meridional flow. Astrophys. J. 450, 1027. DOI.

    Article  ADS  Google Scholar 

  • Hewins, I.M., Gibson, S.E., Webb, D.F., McFadden, R.H., Kuchar, T.A., Emery, B.A., McIntosh, S.W.: 2020, The evolution of coronal holes over three solar cycles using the McIntosh archive. Solar Phys. 295, 161. DOI.

    Article  ADS  Google Scholar 

  • Howe, R.: 2016, Solar interior structure and dynamics. Asian J. Phys. 25, 311. ADS.

    ADS  Google Scholar 

  • Hyder, C.L.: 1965, The “polar crown” of filaments and the Sun’s polar magnetic fields. Astrophys. J. 141, 272. DOI.

    Article  ADS  Google Scholar 

  • Komm, R., González Hernández, I., Howe, R., Hill, F.: 2015, Solar-cycle variation of subsurface meridional flow derived with ring-diagram analysis. Solar Phys. 290, 3113. DOI.

    Article  ADS  Google Scholar 

  • Krista, L.D., McIntosh, S.W., Leamon, R.J.: 2018, The longitudinal evolution of equatorial coronal holes. Astron. J. 155, 153. DOI.

    Article  ADS  Google Scholar 

  • Lecinski, A.: Private communication, 2019.

  • Leighton, R.B.: 1964, Transport of magnetic fields on the Sun. Astrophys. J. 140, 1547. DOI.

    Article  ADS  MATH  Google Scholar 

  • Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI.

    Article  ADS  Google Scholar 

  • Lockyer, W.J.S.: 1931, On the relationship between solar prominences and the forms of the corona. Mon. Not. Roy. Astron. Soc. 91, 797. DOI.

    Article  ADS  Google Scholar 

  • Makarov, V.I., Fatianov, M.P., Sivaraman, K.R.: 1983, Poleward migration of the magnetic neutral line and the reversal of the polar fields on the Sun; I: Period 1945-1981. Solar Phys. 85, 215. DOI.

    Article  ADS  Google Scholar 

  • Makarov, V.I., Sivaraman, K.R.: 1983, Poleward migration of the magnetic neutral line and the reversal of the polar fields on the Sun; II: Period 1904-1940. Solar Phys. 85, 227. DOI.

    Article  ADS  Google Scholar 

  • Makarov, V.I., Sivaraman, K.R.: 1986, Atlas of H-alpha synoptic charts for solar cycle 19 (1955-1964); Carrington solar rotations 1355 to 1486. Kodaikanal Obs. Bull. 7, 2.

    Google Scholar 

  • McIntosh, P.S.: 1972, Solar magnetic fields derived from hydrogen alpha filtergrams. Rev. Geophys. Space Phys. 10, 837. DOI.

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 1979, Annotated atlas of H-alpha synoptic charts for solar cycle 20 (1964-1974) Carrington solar rotations 1487-1616. UAG-70, World Data Center A for Solar-Terrestrial Physics, NOAA Space Environment Laboratory, Boulder, CO.

  • McIntosh, P.S.: 1992, Solar interior processes suggested by large-scale surface patterns. In: The Solar Cycle, Proceedings of the National Solar Observatory/Sacramento Peak 12th Summer Workshop, ASP Conference Series (ASP: San Francisco) 27, 14.

    Google Scholar 

  • McIntosh, P.S.: 2003, Patterns and dynamics of solar magnetic fields and HeI coronal holes in cycle 23. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment, ESA SP-535, ESTEC, Noordwijk, 807.

    Google Scholar 

  • McIntosh, S.W., Wang, X., Leamon, R.J., Davey, A.R., Howe, R., Krista, L.D., Malanushenko, A.V., Markel, R.S., Cirtain, J.W., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014, Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. 792, 12. DOI.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Egeland, R., Dikpati, M., Fan, Y., Rempel, M.: 2019, What the sudden death of solar cycles can tell us about the nature of the solar interior. Solar Phys. 294, 88. DOI.

    Article  ADS  Google Scholar 

  • Mordvinov, A.V., Kitchatinov, L.L.: 2019, Evolution of the Sun’s polar fields and the poleward transport of remnant magnetic flux. Solar Phys. 294, 21. DOI.

    Article  ADS  Google Scholar 

  • Muñoz-Jaramillo, A., Sheeley, N.R., Zhang, J., DeLuca, E.E.: 2012, Calibrating 100 years of polar faculae measurements: Implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753(2), 146. DOI.

    Article  ADS  Google Scholar 

  • Sanchez-Ibarra, A.: 1990, Longitudinal and temporal variations of sunspot regions and coronal holes during cycle 21. Solar Phys. 125, 125. DOI.

    Article  ADS  Google Scholar 

  • Simoniello, R., Tripathy, S.C., Jain, K., Hill, F.: 2016, A new challenge to solar dynamo models from helioseismic observations: The latitudinal dependence of the progression of the solar cycle. Astrophys. J. 828, 41. DOI.

    Article  ADS  Google Scholar 

  • Snodgrass, H.B.: 1983, Magnetic rotation of the solar photosphere. Astrophys. J. 270, 288. DOI.

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. DOI. https://paos.colorado.edu/research/wavelets/.

    Article  ADS  Google Scholar 

  • Waldmeier, M.: 1981, Cyclic variations of the polar coronal hole. Solar Phys. 70, 251. DOI.

    Article  ADS  Google Scholar 

  • Wang, Y.-M.: Private communication, 2020.

  • Wang, Y.-M., Sheeley, N.R. Jr., Nash, A.G.: 1991, A new solar cycle model including meridional circulation. Astrophys. J. 383, 431. DOI.

    Article  ADS  Google Scholar 

  • Webb, D.F., Davis, J.M., McIntosh, P.S.: 1984, Observations of the reappearance of polar coronal holes and the reversal of the polar magnetic field. Solar Phys. 92, 109. DOI.

    Article  ADS  Google Scholar 

  • Webb, D.F., Gibson, S.E., Hewins, I.M., McFadden, R.H., Emery, B.A., Denig, W., McIntosh, P.S.: 2017, Preserving a unique archive for long-term solar variability studies. Space Weather 15, 1442. DOI.

    Article  ADS  Google Scholar 

  • Webb, D.F., Gibson, S.E., Hewins, I.M., McFadden, R.H., Emery, B.A., Malanushenko, A., Kuchar, T.A.: 2018, Global solar magnetic field evolution over 4 solar cycles: Use of the McIntosh archive. Front. Astron. Space Sci. 5, 23. DOI.

    Article  ADS  Google Scholar 

  • Xu, Y., Pötzi, W., Zhang, H., Huang, N., Jing, J., Wang, H.: 2018, Collective study of polar crown filaments in the past four solar cycles. Astrophys. J. Lett. 862, L23. DOI.

    Article  ADS  Google Scholar 

  • Xu, Y., Banerjee, D., Chatterjee, S., Pötzi, W., Wang, Z., Ruan, X., Jing, J., Wang, H.: 2021, Migration of solar polar crown filaments in the past 100 years. Astrophys. J. 909(1), 86. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was made possible by the maps created by Patrick McIntosh who passed away in October 2016. The National Center for Atmospheric Research (NCAR) is a major facility supported by the National Science Foundation (NSF) under Cooperative Agreement No. 1852977. The work of the authors was supported by NSF RAPID grant 1540544 and NSF grant 1722727. The repository for the data discussed here is available at https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-imagery/composites/synoptic-maps/mc-intosh/, and at https://www2.hao.ucar.edu/mcintosh-archive/four-cycles-solar-synoptic-maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Emery.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emery, B.A., Webb, D.F., Gibson, S.E. et al. Latitude Variations in Primary and Secondary Polar Crown Polarity Inversion Lines and Polar Coronal Hole Boundaries over Five Solar Cycles. Sol Phys 296, 119 (2021). https://doi.org/10.1007/s11207-021-01857-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01857-7

Keywords

Navigation