Skip to main content
Log in

Novel shaped solid-core photonic crystal fiber for the numerical study of nonlinear optical properties

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A newly developed pentagonal photonic crystal fiber (P-PCF) with high nonlinearity and birefringence has been introduced in this work. Numerical analysis is carried out across the broader wavelength spectrum from 1.0 to 2.0 μm within the inferred region (IR). Furthermore, using the finite element method (FEM) with smaller mesh, a numerical examination of several optical characteristics such as effective mode area (EMA), nonlinearity, numerical aperture (NA), birefringence, and V-parameter was carried out. By using a circular completely matched layer (PML), the proposed P-PCF's optical transmission qualities have been guided. For the x-polarization mode, the suggested P-PCF exhibits high nonlinearity of 1.6 × 104 W−1 Km−1 at the working wavelength of λ = 1.4 µm. Furthermore, the proposed structure offers strengthening birefringence 2.5 × 10–6 at 1.6 μm wavelength including numerical aperture (NA) of 0.44 for the X-polarization mode. Based on the outstanding advantages, it can be asserted that the suggested model will find a promising domain of application in the area of all optical signal processing, sensing applications, and coherent optical communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abul-Razzak, S.M., Namihira, Y., Begum, F., Kaijage, S., Hai, N.H., Zou, N.: Design of a decagonal photonic crystal fiber for ultra-flattened chromatic dispersion. IEICE Transact. Electr. 90(11), 2141–2145 (2007)

    Article  ADS  Google Scholar 

  • Ahmed, K., Morshed, M., Asaduzzaman, S., Arif, M.F.H.: Optimization and enhancement of liquid analyte sensing performance based on square-cored octagonal photonic crystal fiber. Optik 131, 687–696 (2017)

    Article  ADS  Google Scholar 

  • Amin, M.N., Faisal, M.: Highly nonlinear polarization-maintaining photonic crystal fiber with nanoscaleGaP strips. Appl. Opt. 55(35), 10030–10037 (2016)

    Article  ADS  Google Scholar 

  • Amin, R., Khan, M.E., Al-Zahrani, F.A., Ahmed, K.: Design of novel models for optical communication with ultra-high non-linearity, birefringence and low loss profile. Physica Scripta 96(12), 125107 (2021)

    Article  ADS  Google Scholar 

  • Amin, R., Abdulrazak, L.F., Mohammadd, N., Ahmed, K., Bui, F.M., Ibrahim, S.M.: GaAs-filled elliptical core-based hexagonal PCF with excellent optical properties for nonlinear optical applications. Ceram. Int. 48(4), 5617–5625 (2021)

    Article  Google Scholar 

  • Asaduzzaman, S., Ahmed, K.: Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Research 10, 20–26 (2016)

    Article  Google Scholar 

  • Ayyanar, N., Vigneswaran, D., Sharma, M., Sumathi, M., Rajan, M.M., Konar, S.: Hydrostatic pressure sensor using high birefringence photonic crystal fibers. IEEE Sens. J. 17(3), 650–656 (2016)

    Article  ADS  Google Scholar 

  • Bise, R. T., and Trevor, D. J., 2005. Sol-gel Derived Microstructuredd fiber: fabrication and characterization. OFC/NFOEC technical digest. Optical fiber communication conference, 2005

  • Bykov, D.S., Zeltner, R., Euser, T.G., Xie, S., Russell, P.S.J.: Long-range optical binding in a hollow-core photonic crystal fiber using higher order modes. In Optical Trapping and Optical Micromanipulation XIII. Int. Soci. Optics Photonics 9922, 99221X (2016)

    Google Scholar 

  • Chowdhury, S., Sen, S., Ahmed, K., Asaduzzaman, S.: Design of highly sensible porous shaped photonic crystal fiber with strong confinement field for optical sensing. Optik 142, 541–549 (2017)

    Article  ADS  Google Scholar 

  • Coen, S., Chau, A.H.L., Leonhardt, R., Harvey, J.D., Knight, J.C., Wadsworth, W.J., Russell, P.S.J.: White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Opt. Lett. 26(17), 1356–1358 (2001)

    Article  ADS  Google Scholar 

  • Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, P.S.J., Roberts, P.J., Allan, D.C.: Single-mode photonic band gap guidance of light in air. Science 285(5433), 1537–1539 (1999)

    Article  Google Scholar 

  • Dabas, B., Sinha, R.K.: Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber. Optics Commun. 283(7), 1331–1337 (2010)

    Article  ADS  Google Scholar 

  • Ebendorff-Heidepriem, H., Petropoulos, P., Asimakis, S., Finazzi, V., Moore, R.C., Frampton, K., Koizumi, F., Richardson, D.J., Monro, T.M.: Bismuth glass holey fibers with high nonlinearity. Optics Exp. 12(21), 5082–5087 (2004)

    Article  ADS  Google Scholar 

  • Frederic, Z., Gilles, R., Andre, N.: Foundations of photonic crystal fibres. World Scientific, Singapore (2005)

    Google Scholar 

  • Fu, G., Fu, X., Guo, P., Ji, Y., Bi, W.: Research on fused tapered photonic crystal fiber sensor based on the method of intermittent cooling. J. Sens. 2016, 1–7 (2016)

    Google Scholar 

  • Gangwar, R.K., Bhardwaj, V., Singh, V.K.: Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber. Optical Eng. 55(2), 026111 (2016)

    Article  ADS  Google Scholar 

  • Gao, W., Xu, Q., Li, X., Zhang, W., Hu, J., Li, Y., Chen, X., Yuan, Z., Liao, M., Cheng, T., Xue, X.: Experimental investigation on supercontinuum generation by single, dual, and triple wavelength pumping in a silica photonic crystal fiber. Appl. Optics 55(33), 9514–9520 (2016)

    Article  ADS  Google Scholar 

  • Habib, M.S., Habib, M.S., Razzak, S.A., Hossain, M.A.: Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Optical Fiber Tech. 19(5), 461–467 (2013)

    Article  ADS  Google Scholar 

  • Haque, M.M., et al.: Design and characterization of single mode circular photonic crystal fiber for broadband dispersion compensation. Optik Int. J. Light Electron Opt. 125(11), 2608–2611 (2014)

    Article  Google Scholar 

  • Hou, Y., Fan, F., Jiang, Z.W., Wang, X.H., Chang, S.J.: Highly birefringent polymer terahertz fiber with honeycomb cladding. Optik-Int. J. Light Electron Optics 124(17), 3095–3098 (2013)

    Article  Google Scholar 

  • Huang, T., Liao, J., Fu, S., Tang, M., Shum, P., Liu, D.: Slot spiral silicon photonic crystal fiber with property of both high birefringence and high nonlinearity. IEEE Photonics J. 6(3), 1–7 (2014)

    Article  Google Scholar 

  • Islam, M.S., Sultana, J., Rana, S., Islam, M.R., Faisal, M., Kaijage, S.F., Abbott, D.: Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt. Fiber Technol. 34, 6–11 (2017)

    Article  ADS  Google Scholar 

  • Jabin, M.A., Luo, Y., Peng, G.D., Rana, M.J., Ahmed, K., Nguyen, T.K., Paul, B.K., Dhasarathan, V.: Design and fabrication of amoeba faced photonic crystal fiber for biosensing application. Sens. Actuat A,: Phys. 313, 112204 (2020)

    Article  Google Scholar 

  • Jiang, X., Joly, N.Y., Finger, M.A., Babic, F., Wong, G.K.L., Travers, J.C., Russell, P.S.J.: Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat. Photonics 9(2), 133–139 (2015)

    Article  ADS  Google Scholar 

  • Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Optics lett 21(19), 1547–1549 (1996)

    Article  ADS  Google Scholar 

  • Knight, J.C., Broeng, J., Birks, T.A., Russell, P.S.J.: Photonic band gap guidance in optical fibers. Science 282(5393), 1476–1478 (1998)

    Article  Google Scholar 

  • Kuhlmey, B.T., Eggleton, B.J., Wu, D.K.: Fluid-filled solid-core photonic bandgap fibers. J. Lightwave Tech. 27(11), 1617–1630 (2009)

    Article  ADS  Google Scholar 

  • Lee, K., Asher, S.A.: Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 122(39), 9534–9537 (2000)

    Article  Google Scholar 

  • Li, X., Xu, Z., Ling, W., Liu, P.: Design of highly nonlinear photonic crystal fibers with flattened chromatic dispersion. Appl. Opt. 53(29), 6682–6687 (2014)

    Article  ADS  Google Scholar 

  • Liao, J., Huang, T.: Highly nonlinear photonic crystal fiber with ultrahigh birefringence using a nano-scale slot core. Optical Fiber Tech. 22, 107–112 (2015)

    Article  ADS  Google Scholar 

  • Liao, J., Yang, F., Xie, Y., Wang, X., Huang, T., Xiong, Z., Kuang, F.: Ultrahigh birefringent nonlinear slot silicon microfiber with low dispersion. IEEE Photonics Tech Lett. 27(17), 1868–1871 (2015)

    Article  ADS  Google Scholar 

  • Liu, W., Cao, Y., Tong, Z.G.: A Photonic Crystal Fiber sensor based on a spherical-shape structure, In: Applied system innovation: Proceedings of the 2015 International conference on applied system innovation (ICASI 2015), 2016, pp. 59

  • Lu, S., Li, W., Guo, H., Lu, M.: Analysis of birefringent and dispersive properties of photonic crystal fibers. Appl. Optics. 50(30), 5798–5802 (2011)

    Article  ADS  Google Scholar 

  • Luong, J.H., Male, K.B., Glennon, J.D.: Biosensor technology: technology push versus market pull. Biotechnol. Adv. 26(5), 492–500 (2008)

    Article  Google Scholar 

  • Maji, P.S., Chaudhuri, P.R.: Studies of the modal properties of circularly photonic crystal fiber (C-PCF) for high power applications. Photonics Nanostruct.-Fundame. Appli. 19, 12–23 (2016)

    Article  ADS  Google Scholar 

  • Morshed, M., Hasan, M.I., Razzak, S.A.: Enhancement of the sensitivity of gas sensor based on microstructured optical fiber. Photonic Sens. 5(4), 312–320 (2015)

    Article  ADS  Google Scholar 

  • Morshed, M., Arif, M.F.H., Asaduzzaman, S., Ahmed, K.: Design and characterization of photonic crystal fiber for sensing applications. Eur. Scient. J. 11(12), 1–8 (2015)

    Google Scholar 

  • Morshed, M., Asaduzzaman, S., Arif, M.F.H. and Ahmed, K., 2015, May. Proposal of simple gas sensor based on micro structure optical fiber. In 2015 International conference on electrical engineering and information communication technology (ICEEICT) (pp. 1–5).IEEE.

  • Olyaee, S., Naraghi, A., Ahmadi, V.: High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Optik 125(1), 596–600 (2014)

    Article  ADS  Google Scholar 

  • Paul, B.K., Ahmed, K., Asaduzzaman, S., Islam, M.S.: Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: design and analysis. Sens. Bio-Sens. Res. 12, 36–42 (2017)

    Article  Google Scholar 

  • Reeves, W.H., Skryabin, D.V., Biancalana, F., Knight, J.C., Russell, P.S.J., Omenetto, F.G., Efimov, A., Taylor, A.J.: Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature 424(6948), 511–515 (2003)

    Article  ADS  Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Ahmed, R., Chow, D.M., Sua, Y.M., Shee, Y.G., Adikan, F.M.: Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics J. 8(1), 1–8 (2015)

    Article  Google Scholar 

  • Saini, T.S., Tiwari, U.K., Sinha, R.K.: Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: design and analysis. J. Appl. Phys. 122(5), 053104 (2017)

    Article  ADS  Google Scholar 

  • Saitoh, K., Kakihara, K., Varsheney, S. and Koshiba, M., 2008, May. Nonlinearity enhancement and dispersion management in bismuth microstructuredd fibers with a filled slot defect. In 2008 Conference on lasers and electro-optics and 2008 Conference on quantum electronics and laser science (pp. 1–2).IEEE

  • Shi, F., Peng, L., Zhou, G., Cang, X., Hou, Z., Xia, C.: An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit. Plasmonics 10(6), 1263–1268 (2015)

    Article  Google Scholar 

  • Tian, L., Wei, L., Guoying, F.: Numerical simulation of supercontinuum generation in liquid-filled photonic crystal fibers with a normal flat dispersion profile. Optics Commun. 334, 196–202 (2015)

    Article  ADS  Google Scholar 

  • Vyas, S., Tanabe, T., Tiwari, M., Singh, G.: Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation. Chinese Optics leti. 14(12), 123201 (2016)

    Article  ADS  Google Scholar 

  • Wang, A., Zhang, B., Hou, J., Wei, H., Tong, W., Luo, J., Zhang, Z.: Visible supercontinuum generation with sub-nanosecond 532-nm pulses in all-solid photonic bandgap fiber. IEEE Photonics Tech. Lett. 24(2), 143–145 (2011)

    Article  ADS  Google Scholar 

  • Wei, S., Yuan, J., Yu, C., Wu, Q., Farrell, G., Li, S., Jin, B., Hu, X.: Design on a highly birefringent and highly nonlinear tellurite ellipse core photonic crystal fiber with two zero dispersion wavelengths. Opt. Fiber Technol. 20(4), 320–324 (2014)

    Article  ADS  Google Scholar 

  • Wu, Z., Shi, Z., Xia, H., Zhou, X., Deng, Q., Huang, J., Jiang, X., Wu, W.: Design of highly birefringent and low-loss oligoporous-core THz photonic crystal fiber with single circular air-hole unit. IEEE Photonics J. 8(6), 1–11 (2016)

    Google Scholar 

  • Xu, Z., Lim, J., Hu, D.J.J., Sun, Q., Wong, R.Y.N., Li, K., Jiang, M., Shum, P.P.: Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber. Opt. Express 24(2), 1699–1707 (2016)

    Article  ADS  Google Scholar 

  • Zakery, A., Elliott, S.R.: Optical properties and applications of chalcogenide glasses: a review. J. Non-Cryst. Solids 330(1–3), 1–12 (2003)

    Article  ADS  Google Scholar 

  • Zhong, Z., Zhang, Z., Tsuji, Y., Eguchi, M.: Study on crosstalk-free polarization splitter based on square lattice single-polarization photonic crystal fibers. IEEE J. QUantum Electron. 52(5), 1–7 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & innovation, Ministry of education in Saudi Arabia for funding this research work through the project number 20-UQU-IF-P2-001.

Funding

The Funded No. is 20-UQU-IF-P2-001.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization KA, Data curation, Formal analysis, Investigation, Methodology, MMH, BKP; Funding acquisition, LFA, FAAZ Project administration, KA; Resources, Software, MMH, KA, BKP Supervision, KA; Validation, MMH, BKP; Visualization, Writing—original draft, MMH, BKP, KA, FAAZ; Writing—review editing, LFA, KA, MMH, FAAZ

Corresponding author

Correspondence to Kawsar Ahmed.

Ethics declarations

Conflict of interest

There are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.M., Abdulrazak, L.F., Paul, B.K. et al. Novel shaped solid-core photonic crystal fiber for the numerical study of nonlinear optical properties. Opt Quant Electron 54, 139 (2022). https://doi.org/10.1007/s11082-022-03531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03531-z

Keywords

Navigation