Skip to main content
Log in

Characteristics of the Balance of Resting State Networks after Migration to the Conditions of the North

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We report here a study of 45 students (all men) of different ethnicities (mainly Tajik and Kyrgyz) aged 17–28 years, who moved to the North (Yakutsk, Republic of Sakha (Yakutia)). The study addressed the balance of connectivity of resting state networks in study condition 1, when participants entered new and unfamiliar living conditions, and in study condition 2, when subjects had lived in these conditions for one year. The 128-channel EEG was recorded at rest. Connectivity between nodes of the resting state networks and the rest of the brain was calculated. Connectivity contrasts the attention networks vs default mode network in conditions 1 and 2 were performed. Condition 1 was characterized by a predominance of attention networks over the default mode network of the brain, which may be associated with an increase in attention focused on the perception of new stimuli and tasks in the new conditions. In condition 2, after living in these environmental conditions for one year, the balance of the resting state networks shifted towards a predominance of the brain’s default mode network over the attention networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiki, T. J., Averill, C. L., and Abdallah, C. G., “A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies,” Curr. Psychiatry Rep., 19, No. 11, 1–10 (2017).

    Article  Google Scholar 

  • Brookes, M. J., Liddle, E. B., Hale, J. R., et al., “Task induced modulation of neural oscillations in electrophysiological brain networks,” NeuroImage, 63, No. 4, 1918–1930 (2012).

    Article  PubMed  CAS  Google Scholar 

  • Brookes, M. J., Woolrich, M., Luckhoo, H., et al., “Investigating the electrophysiological basis of resting state networks using magnetoencephalography,” Proc. Natl. Acad. Sci. USA, 108, No. 40, 16783–16788 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L., “The brain’s default network: anatomy, function, and relevance to disease,” Ann. N. Y. Acad. Sci., 1124, No. 1, 1–38 (2008).

    Article  PubMed  Google Scholar 

  • Cauda, F., D’Agata, F., Sacco, K., et al., “Functional connectivity of the insula in the resting brain,” NeuroImage, 55, No. 1, 8–23 (2011).

    Article  PubMed  Google Scholar 

  • Clasen, P. C., Beevers, C. G., Mumford, J. A., and Schnyer, D. M., “Cognitive control network connectivity in adolescent women with and without a parental history of depression,” Dev. Cogn. Neurosci., 7, 13–22 (2014).

    Article  PubMed  Google Scholar 

  • Cohen, H., Kaplan, Z., Kotler, M., et al., “Repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in posttraumatic stress disorder: a double-blind, placebo-controlled study,” Am. J. Psychiatry, 161, No. 3, 515–524 (2004).

    Article  PubMed  Google Scholar 

  • Dailey, N. S., Smith, R., Raikes, A., et al., “Reduced functional connectivity in the executive control network following mild traumatic brain injury: Implications for emotional regulation,” Biol. Psychiatry, 83, 162 (2018).

    Article  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., et al., “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. USA, 102, 9673–9678 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuchs, M., Wagner, M., and Kastner, J., “Boundary element method volume conductor models for EEG source reconstruction,” Clin. Neurophysiol., 112, 1400–1407 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, B. D. and Ziemann, U., “Decreased neuronal inhibition in cerebral cortex in obsessive-compulsive disorder on transcranial magnetic stimulation,” Lancet, 352, No. 9131, 881–882 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Gusnard, D. A. and Raichle, M. E., “Searching for a baseline: functional imaging and the resting human brain,” Nat. Rev. Neurosci., 2, No. 10, 685–694 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, J. P., Chen, M. C., and Gotlib, I. H., “Neural systems approaches to understanding major depressive disorder: an intrinsic functional organization perspective,” Neurobiol. Dis., 52, 4–11 (2013).

    Article  PubMed  Google Scholar 

  • Hipp, J. F., Hawellek, D. J., Corbetta, M., et al., “Large-scale cortical correlation structure of spontaneous oscillatory activity,” Nat. Neurosci., 15, No. 6, 884–890 (2012).

    Article  PubMed  CAS  Google Scholar 

  • Knyazev, G. G., “EEG delta oscillations as a correlate of basic homeostatic and motivational processes,” Neurosci. Biobehav. Rev., 36, No. 1, 677–695 (2012).

    Article  PubMed  Google Scholar 

  • Knyazev, G. G., Bocharov, A. V., Savostyanov, A. N., and Levin, E. A., “EEG correlates of the activity of the default system on processing of socially significant information,” Zh. Vyssh. Nerv. Deyat., 70, No. 2, 174–181 (2020).

    Google Scholar 

  • Knyazev, G. G., Savostyanov, A. N., Bocharov, A. V., et al., “Task-positive and task-negative networks in major depressive disorder: a combined fMRI and EEG study,” J. Affect. Disord., 235, 211–219 (2018).

    Article  PubMed  Google Scholar 

  • Knyazev, G. G., Savostyanov, A. N., Bocharov, A. V., et al., “Intrinsic connectivity networks in the self-and other-referential processing,” Front. Hum. Neurosci., 14, 579703 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Knyazev, G. G., Savostyanov, A. N., Bocharov, A. V., et al., “Task-positive and task-negative networks and their relation to depression: EEG beamformer analysis,” Behav. Brain Res., 306, 160–169 (2016).

    Article  PubMed  Google Scholar 

  • Kober, H., Kross, E. F., Mischel, W., et al., “Regulation of craving by cognitive strategies in cigarette smokers,” Drug Alcohol Depend., 106, No. 1, 52–55 (2010).

    Article  PubMed  Google Scholar 

  • Koch, S. B., van Zuiden, M., Nawijn, L., et al., “Aberrant resting-state brain activity in posttraumatic stress disorder: A meta-analysis and systematic review,” Depress. Anxiety, 33, No. 7, 592–605 (2016).

    Article  PubMed  Google Scholar 

  • Lefaucheur, J. P., Antal, A., Ayache, S. S., et al., “Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS),” Clin. Neurophysiol., 128, No. 1, 56–92 (2017).

    Article  PubMed  Google Scholar 

  • Litvak, V., Eusebio, A., Jha A, et al., “Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients,” NeuroImage, 50,1578–1588 (2010).

    Article  PubMed  Google Scholar 

  • Marks, I. M. and Nesse, R. M., “Fear and fitness: an evolutionary analysis of anxiety,” Ethol. Sociobiology, 15, 247–261 (1994).

    Article  Google Scholar 

  • Menon, V. and D’Esposito, M., “The role of PFC networks in cognitive control and executive function,” Neuropsychopharmacology, 47, No. 1, 90–103 (2022).

    Article  PubMed  Google Scholar 

  • Menon, V. and Uddin, L. Q., “Saliency, switching, attention and control: a network model of insula function,” Brain Struct. Funct., 214, No. 5, 655–667 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Menon, V., “Large-scale brain networks and psychopathology: a unifying triple network model,” Trends Cogn. Sci., 15, No. 10, 483–506 (2011).

    Article  PubMed  Google Scholar 

  • Menon, V., “The triple network model, insight, and large-scale brain organization in autism,” Biol. Psychiatry, 84, 236–238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagornova, Zh. V., Shemyakina, N. V., Belisheva, N. K., and Soroko, S. I., “Analysis of age dynamics and gender characteristics of spontaneous bioelectrical activity and components of auditory evoked potentials in primary schoolchildren living in the Arctic zone of the Russian Federation,” Fiziol. Cheloveka, 44, No. 2, 84–95 (2018).

    Google Scholar 

  • Pan, J., Zhan, L., Hu, C., et al., “Emotion regulation and complex brain networks: association between expressive suppression and efficiency in the fronto-parietal network and default-mode network,” Front. Hum. Neurosci., 12, 70 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pilhatsch, M., Vetter, N. C., Hubner, T., et al., “Amygdala-function perturbations in healthy mid-adolescents with familial liability for depression,” J. Am. Acad. Child Adolesc. Psychiatry, 53, 559–68 (2014).

    Article  PubMed  Google Scholar 

  • Raichle, M. E., “The brain’s default mode network,” Annu. Rev. Neurosci., 38, 433–447 (2015).

    Article  PubMed  CAS  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., et al., “A default mode of brain function,” Proc. Natl. Acad. Sci. USA, 98, No. 2, 676–682 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rozhkov, V. P., Trifonov, M. I., and Soroko, S. I., “Assessment of the formation of brain bioelectrical activity in northern schoolchildren using integral multichannel EEG parameters,” Fiziol. Cheloveka, 44, No. 6, 15–26 (2018).

    Google Scholar 

  • Saviola, F., Pappaianni, E., Monti, A., et al., “Trait and state anxiety are mapped differently in the human brain,” Sci. Rep., 10, No. 1, 1–11 (2020).

    Article  Google Scholar 

  • Schacter, D. L., Addis, D. R., and Buckner, R. L., “Episodic simulation of future events: Concepts, data, and applications,” Ann. N.Y. Acad. Sci., 1124, No. 1, 39–60 (2008).

  • Seeley, W. W., “The salience network: a neural system for perceiving and responding to homeostatic demands,” J. Neurosci., 39, No. 50, 9878–9882 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seeley, W. W., Menon, V., Schatzberg, A. F., et al., “Dissociable intrinsic connectivity networks for salience processing and executive control,” J. Neurosci., 27, No. 9, 2349–2356 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shabanov, L. V. and Morodenko, E. V., Dynamics of Personality Changes in Students in the Process of Social Adaptation to New Living Conditions, Prokopevsk (2015).

  • Smitha, K. A., Akhil Raja, K., Arun, K. M., et al., “Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks,” Neuroradiol. J., 30, No. 4, 305–317 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spielberger, C. D., State-Trait Anxiety Inventory: A Comprehensive Bibliography, Consulting Psychologists Press, Palo Alto (1984).

    Google Scholar 

  • Szeszko, P. R. and Yehuda, R., “Magnetic resonance imaging predictors of psychotherapy treatment response in post-traumatic stress disorder: A role for the salience network,” Psychiatry Res., 277, 52–57 (2019).

    Article  PubMed  Google Scholar 

  • Van Veen, B. D., van Drongelen, W., Yuchtman, M., and Suzuki, A., “Localization of brain electrical activity via linearly constrained minimum variance spatial filtering,” IEEE Trans. Biomed. Eng., 44, 867–80 (1997).

    Article  PubMed  Google Scholar 

  • Wu, L. L., Potenza, M. N., Zhou, N., et al., “A role for the right dorsolateral prefrontal cortex in enhancing regulation of both craving and negative emotions in internet gaming disorder: A randomized trial,” Eur. Neuropsychopharmacol., 36, 29–37 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bocharov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharov, A.V., Savostyanov, A.N., Tamozhnikov, S.S. et al. Characteristics of the Balance of Resting State Networks after Migration to the Conditions of the North. Neurosci Behav Physi 53, 1441–1448 (2023). https://doi.org/10.1007/s11055-023-01537-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01537-y

Keywords

Navigation