Skip to main content

Advertisement

Log in

NGS study in a sicilian case series with a genetic diagnosis for Gerstmann-Sträussler-Scheinker syndrome (PRNP, p.P102L)

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Gerstmann Sträussler Scheinker (GSS) is an inherited, invariably fatal prion disease. Like other human prion diseases, GSS is caused by missense mutations in the prion protein (PrP) gene (PRNP), and by the formation and overtime accumulation of the misfolded, pathogenic scrapie PrP (PrPSc). The first mutation identified in the PRNP gene, and the one blamed as the main cause of the disease, is c.C305T:p.P102L.

Methods and results

The Sanger sequencing method was performed on the PRNP gene for the detection of c.C305T:p.P102L mutations in a cohort of 10 subjects; moreover, a study was carried out, using Next Generation Sequencing (NGS), by sequencing a group of genes related to amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), movement disorders and dementia which show a phenotypic profile similar to that of GSS. The results obtained from the study using NGS indicate the potential role of other genetic variants which could contribute to the various GSS phenotypes.

Conclusions

In conclusion, we highlight the large clinical variability in subjects presenting with GSS and p.P102L, as well as the hypothesis that the mutation in PrP codon 102 alone is not sufficient to trigger the cardinal clinical signs of the disease; furthermore, we do not exclude the possibility that further genetic variants play a decisive role in the aspects of the various phenotypes with which GSS manifests itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data Availability

No Data associated in the manuscript.

References

  1. Piccardo P, Dlouhy SR, Lievens PM, Young K, Bird TD, Nochlin D et al (1998) Phenotypic variability of Gerstmann-Sträussler-Scheinker disease is associated with prion protein heterogeneity. J Neuropathol Exp Neurol 57:979–988

    Article  CAS  PubMed  Google Scholar 

  2. Doh-ura K, Tateishi J, Sasaki H, Kitamoto T, Sakaki Y (1989) Pro----leu change at position 102 of prion protein is the most common but not the sole mutation related to Gerstmann-Sträussler syndrome. Biochem Biophys Res Commun 163:974–979

    Article  CAS  PubMed  Google Scholar 

  3. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 9(4542):136–144

    Article  Google Scholar 

  4. Parchi P, Chen SG, Brown P, Zou W, Capellari S, Budka H et al (1998) Different patterns of truncated prion protein fragments correlate with distinct phenotypes in P102L Gerstmann-Sträussler-Scheinker disease. Proc Natl Acad Sci U S A. 7;95(14):8322–7

  5. Bagyinszky E, Giau VV, Youn YC, An SSA, Kim S (2014) Characterization of mutations in PRNP (prion) gene and their possible roles in neurodegenerative diseases. Neuropsychiatr Dis Treat. 2018;14:2067–85

  6. Acevedo-Morantes CY, Wille H (2014) The structure of human prions: from biology to structural models-considerations and pitfalls. Viruses 6:3875–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gambetti P, Dong Z, Yuan J, Xiao X, Zheng M, Alshekhlee A et al (2008) A novel human disease with abnormal prion protein sensitive to protease. Ann Neurol 63(6):697–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dimitz L (1913) Bericht der Vereines fur psychiatrie und neurologie in Wien (Vereinsjahr- 1912/1913), Sitzung vom 11 Juni 1912. Jahrb Psychiatr Neurol 34:384

    Google Scholar 

  9. Gerstmann J (1928) Uber ein noch nicht beschriebenes Reflexphanomen beieiner Erkrankung des zerebellaren Systems. Wien Medizin Wochenschr 78:906–908

    Google Scholar 

  10. Gerstmann J, Sträussler E, Scheinker I Uber eine eigenartige hereditar-familiare Erkrankung des Zetralnerven systems. (1936) Zugleich ein Beittrag zur Frage des vorzeitigen lokalen Alterns. Z ges Neurol Psychiat 154:736–762

  11. Tesar A, Matej R, Kukal J, Johanidesova S, Rektorova I, Vyhnalek M et al (2019) Clinical variability in P102L Gerstmann-Sträussler-Scheinker Syndrome. Ann Neurol 86:643–652

    Article  CAS  PubMed  Google Scholar 

  12. Salemi M, Salluzzo MG, Barone C, Romano C (2020) Study of the MDM2 -410T-G polymorphism (rs2279744) by pyrosequencing in mothers of Down Syndrome subjects. Hum Cell 33:476–478

    Article  CAS  PubMed  Google Scholar 

  13. Uakhit R, Smagulova A, Syzdykova A, Abdrakhmanov S, Kiyan V (2022) Genetic diversity of Echinococcus spp. in wild carnivorous animals in Kazakhstan. Vet World 15:1489–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng H-L, Shao Y-R, Dong Y, Dong H-L, Yang L, Ma Y et al (2021) Genetic spectrum and clinical features in a cohort of chinese patients with autosomal recessive cerebellar ataxias. Transl Neurodegener 10:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fanin M, Savarese M, Nascimbeni AC, Di Fruscio G, Pastorello E, Tasca E et al (2015) Dominant muscular dystrophy with a novel SYNE1 gene mutation. Muscle Nerve 51:145–147

    Article  CAS  PubMed  Google Scholar 

  16. Krygier M, Kwarciany M, Wasilewska K, Pienkowski VM, Krawczyńska N, Zielonka D et al (2019) A study in a polish ataxia cohort indicates genetic heterogeneity and points to MTCL1 as a novel candidate gene. Clin Genet 95:415–419

    Article  CAS  PubMed  Google Scholar 

  17. Galatolo D, De Michele G, Silvestri G, Leuzzi V, Casali C, Musumeci O et al (2021) NGS in Hereditary Ataxia: when Rare becomes frequent. Int J Mol Sci 22:8490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tian X, Liang W-C, Feng Y, Wang J, Zhang VW, Chou C-H et al (2015) Expanding genotype/phenotype of neuromuscular diseases by comprehensive target capture/NGS. Neurol Genet 1:e14

    Article  PubMed  PubMed Central  Google Scholar 

  19. Özoğuz A, Uyan Ö, Birdal G, Iskender C, Kartal E, Lahut S et al (2015) The distinct genetic pattern of ALS in Turkey and novel mutations. Neurobiol Aging 36:1764e9–1764e18

    Article  Google Scholar 

  20. Uddin M, Unda BK, Kwan V, Holzapfel NT, White SH, Chalil L et al (2018) OTUD7A regulates neurodevelopmental phenotypes in the 15q13.3 Microdeletion Syndrome. Am J Hum Genet 102:278–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92:180–185

    Article  CAS  PubMed  Google Scholar 

  23. Guo Z, Chen W, Wang L, Qian L (2020) Clinical and genetic spectrum of children with primary ciliary Dyskinesia in China. J Pediatr 225:157–165e5

    Article  CAS  PubMed  Google Scholar 

  24. Lim ET, Uddin M, De Rubeis S, Chan Y, Kamumbu AS, Zhang X et al (2017) Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat Neurosci 20:1217–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vardarajan BN, Zhang Y, Lee JH, Cheng R, Bohm C, Ghani M et al (2015) Coding mutations in SORL1 and Alzheimer disease. Ann Neurol 77:215–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo H, Wang T, Wu H, Long M, Coe BP, Li H et al (2018) Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol Autism 9:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vorstman JAS, Olde Loohuis LM, Investigators GROUP, Kahn RS, Ophoff RA, GROUP investigators (2018) Double hits in schizophrenia. Hum Mol Genet 27:2755–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ruiz-Martínez J, Azcona LJ, Bergareche A, Martí-Massó JF, Paisán-Ruiz C (2017) Whole-exome sequencing associates novel CSMD1 gene mutations with familial Parkinson disease. Neurol Genet 3:e177

    Article  PubMed  PubMed Central  Google Scholar 

  29. Protasova MS, Gusev FE, Andreeva TV, Klyushnikov SA, Illarioshkin SN, Rogaev EI (2022) Novel genes bearing mutations in rare cases of early-onset ataxia with cerebellar hypoplasia. Eur J Hum Genet 30:703–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goldman JS, Vallabh SM (2022) Genetic counseling for prion disease: updates and best practices. Genet Med 24:1993–2003

    Article  CAS  PubMed  Google Scholar 

  31. Wadsworth JDF, Joiner S, Linehan JM, Cooper S, Powell C, Mallinson G et al (2006) Phenotypic heterogeneity in inherited prion disease (P102L) is associated with differential propagation of protease-resistant wild-type and mutant prion protein. Brain 129:1557–1569

    Article  PubMed  Google Scholar 

  32. Salemi M, Marchese G, Lanza G, Cosentino FII, Salluzzo MG, Schillaci FA et al (2022) Role and dysregulation of miRNA in patients with Parkinson’s Disease. Int J Mol Sci 24:712

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lukiw WJ, Dua P, Pogue AI, Eicken C, Hill JM (2011) Upregulation of micro RNA-146a (miRNA-146a), a marker for inflammatory neurodegeneration, in sporadic Creutzfeldt-Jakob disease (sCJD) and Gerstmann-Straussler-Scheinker (GSS) syndrome. J Toxicol Environ Health A 74:1460–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Italian Ministry of Health (RC 2773804) to M.S., M.G.S., F.A.S., and R.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Salemi.

Ethics declarations

Conflict of interest

All authors declare there is no conflict of interest in this work.

Ethical approval

This study was approved by the Ethical Committee of the Oasi Research Institute-IRCCS, Troina (Italy), (approval number 2022/04/05/CE-IRCCS-OASI/52). All procedures performed in studies involving human participants were following the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salemi, M., Mandarà, L.G., Salluzzo, M.G. et al. NGS study in a sicilian case series with a genetic diagnosis for Gerstmann-Sträussler-Scheinker syndrome (PRNP, p.P102L). Mol Biol Rep 50, 9715–9720 (2023). https://doi.org/10.1007/s11033-023-08764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08764-z

Keywords

Navigation