Skip to main content
Log in

The High-Order Corrections of Discrete Harmonic Measures and Their Correction Constants

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

By the dimension reduction idea, overshoot for random walks, coupling and martingale arguments, we obtain a simpler and easily computable expression for the first-order correction constant between discrete harmonic measures for random walks with rotationally invariant step distribution in \(\mathbb {R}^d\ (d\ge 2)\) and the corresponding continuous counterparts. This confirms and extends a conjecture in Jiang and Kennedy (J Theor Probab 30(4):1424–1444, 2017), and simplifies the related expression of Wang et al. (Bernoulli 25(3):2279–2300, 2019). Furthermore, we propose a universality conjecture on high-order corrections for error estimation between generalized discrete harmonic measures and their continuous counterparts, which generalizes the universality conjecture of the first-order correction in Kennedy (J Stat Phys 164(1):174–189, 2016); and we prove this conjecture heuristically for the rotationally invariant case, and also provide several examples of second-order error corrections to check the conjecture by a numerical simulation argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asmussen, S.: Applied Probability and Queues, 2nd edn. Applications of Mathematics, vol. 51. Stochastic Modelling and Applied Probability. Springer, New York (2003)

  2. Axler, S., Bourdon, P., Wade, R.: Harmonic Function Theory. Springer, New York (2001)

    Book  Google Scholar 

  3. Beneš, C.: Rates of convergence for the planar discrete Green’s function in Pacman domains. Electron. J. Probab.26, Paper No. 41 (2021)

  4. Boutsikas, M.V., Politis, K.: Exit times, overshoot and undershoot for a surplus process in the presence of an upper barrier. Methodol. Comput. Appl. Probab. 19(1), 75–95 (2015)

    Article  MathSciNet  Google Scholar 

  5. Carlsson, H.: Remainder term estimates of the renewal function. Ann. Probab. 11(1), 143–157 (1983)

    Article  MathSciNet  Google Scholar 

  6. Carlsson, H.: Estimates of the renewal measure. J. Math. Soc. Jpn. 73(3), 681–701 (2021)

    Article  MathSciNet  Google Scholar 

  7. Chelkak, D., Smirnov, S.: Discrete complex analysis on isoradial graphs. Adv. Math. 228, 1590–1630 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chow, Y.S.: On Spitzer’s formula for the moment of ladder variables. Stat. Sin. 7(1), 149–156 (1997)

    MathSciNet  Google Scholar 

  9. Clément, D., Landy, R.: high order expansions for renewal functions and applications to ruin theory. Ann. Appl. Probab. 27(4), 2342–2382 (2017)

    Article  MathSciNet  Google Scholar 

  10. Dai, Y.: The exit distribution for smart kinetic walk with symmetric transition probability. J. Stat. Phys. 166(6), 1455–1463 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Doney, R.A.: Moments of ladder heights in random walks. J. Appl. Probab. 17(1), 248–252 (1980)

    Article  MathSciNet  Google Scholar 

  12. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    Google Scholar 

  13. Fukai, Y., Uchiyama, K.: Potential kernel for two-dimensional random walk. Ann. Proab. 24, 1972–1992 (1996)

    MathSciNet  Google Scholar 

  14. Garnett, J., Marshall, D.: Harmonic Measure. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin (2001)

  16. Gut, A.: Stopped Random Walks. Limit Theorems and Applications, 2nd ed. Springer Series in Operations Research and Financial Engineering. Springer, New York (2009)

  17. Jerison, D.: Regularity of the Poisson kernel and free boundary problems. Colloq. Math. 60(2), 547–568 (1990)

    Article  MathSciNet  Google Scholar 

  18. Jiang, J.: Exploration processes and SLE$_6$. Markov Process. Relat. Fields 23(3), 445–465 (2017)

    MathSciNet  Google Scholar 

  19. Jiang, J., Kennedy, T.: The difference between a discrete and continuous harmonic measure. J. Theor. Probab. 30(4), 1424–1444 (2017)

    Article  MathSciNet  Google Scholar 

  20. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)

    Book  Google Scholar 

  21. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics, vol. 113. Springer, New York (1991)

  22. Kennedy, T.: The smart kinetic self-avoiding walk and Schramm–Loewner evolution. J. Stat. Phys. 160, 302–320 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kennedy, T.: The first order correction to the exit distribution for some random walks. J. Stat. Phys. 164(1), 174–189 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kozma, G., Schreiber, E.: An asymptotic expansion for the discrete harmonic potential. Electon. J. Probab. 9, 1–17 (2004)

    MathSciNet  Google Scholar 

  25. Lai, T.L.: Asymptotic moments of random walks with applications to ladder variables and renewal theory. Ann. Probab. 4(1), 51–66 (1976)

    Article  MathSciNet  Google Scholar 

  26. Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  27. Möters, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  28. Nagaev, A.V.: A method for computing the moments of the ladder height. Teor. Veroyatnost. i Primenen. 30(3), 535–538 (1985)

    MathSciNet  Google Scholar 

  29. Siegmund, D.: Corrected diffusion approximations in certain random walk problems. Adv. Appl. Probab. 11(4), 701–719 (1979)

    Article  MathSciNet  Google Scholar 

  30. Stone, C.J.: On moment generating functions and renewal theory. Ann. Math. Stat. 36, 1298–1301 (1965)

    Article  MathSciNet  Google Scholar 

  31. Wang, L.M., Xiang, K.N., Zou, L.: The first order correction to harmonic measure for random walks of rotationally invariant step distribution. Bernoulli 25(3), 2279–2300 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lang Zou.

Additional information

Communicated by Hal Tasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The project is supported partially by the NSFC (No. 12171410, No. 12001463), the Education Department of Hunan Province (No. 23B0178), Hu Xiang Gao Ceng Ci Ren Cai Ju Jiao Gong Cheng-Chuang Xin Ren Cai (No. 2019RS1057) and the Graduate Innovation Project of Xiangtan University (No. XDCX2023Y105). S. Yang is supported by FAPSP 2023/12652-4

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xiang, K., Yang, S. et al. The High-Order Corrections of Discrete Harmonic Measures and Their Correction Constants. J Stat Phys 191, 81 (2024). https://doi.org/10.1007/s10955-024-03292-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-024-03292-x

Keywords

Mathematics Subject Classification

Navigation