Skip to main content
Log in

An Investigation of Chaotic Diffusion in a Family of Hamiltonian Mappings Whose Angles Diverge in the Limit of Vanishingly Action

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The chaotic diffusion for a family of Hamiltonian mappings whose angles diverge in the limit of vanishingly action is investigated by using the solution of the diffusion equation. The system is described by a two-dimensional mapping for the variables action, I, and angle, \(\theta \) and controlled by two control parameters: (i) \(\epsilon \), controlling the nonlinearity of the system, particularly a transition from integrable for \(\epsilon =0\) to non-integrable for \(\epsilon \ne 0\) and; (ii) \(\gamma \) denoting the power of the action in the equation defining the angle. For \(\epsilon \ne 0\) the phase space is mixed and chaos is present in the system leading to a finite diffusion in the action characterized by the solution of the diffusion equation. The analytical solution is then compared to the numerical simulations showing a remarkable agreement between the two procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Similar in the sense of mixed with coexistence of chaos and regularity including periodic islands and invariant spanning curves.

  2. We assume them as reflecting boundaries, however a short discussion must be made here. When a particle passes near enough of a regular region it might suffers a dynamical trapping called stickiness. The particle stays confined in such a region for a while, that may be eventually very long, until escape such region and visit other regions of the phase space. During a temporary trapping the diffusion is no longer normal but rather anomalous.

  3. We have also compared the dynamics with \(k=10\), \(k=10^3\) and \(k=10^4\) and no difference was noticed.

References

  1. Lee, S., Lee, H.-Y., Lee, I.-F., Tseng, C.-Y.: Ink diffusion in water. Eur. J. Phys. 25, 331 (2004)

    Article  Google Scholar 

  2. Murase, K., Tanada, S., Mogami, H., Kawamura, M., Miyagawa, M., Yamada, M., Higashiro, H., Lio, A., Hamamoto, K.: Validity of microsphere model in cerebral blood flow measurement using N-isopropyl-p-(I-123) iodoamphetamine. Med. Phys. 19, 70 (1990)

    Google Scholar 

  3. Morris, W.F.: Predicting the consequence of plant spacing and biased movement for pollen dispersal by honey bees. Ecology 74, 493 (1993)

    Article  Google Scholar 

  4. Popp, D.: International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US. Jpn. Ger. J. Environ. Econ. Manag. 51, 46 (2006)

    Article  MATH  Google Scholar 

  5. Ozmidov, R.V.: Diffusion of Contaminants in the Ocean. Springer, New York (1990)

    Book  Google Scholar 

  6. Hagedorn, C., Mc Coy, E.L., Rahe, T.M.: The potential for ground water contamination from septic effluents. J. Environ. Qual. 10, 1 (1981)

    Article  Google Scholar 

  7. Patria, R.K.: Statistical Mechanics. Elsevier, Berlin (2008)

    Google Scholar 

  8. Reif, F.: Fundamentals of statistical and thermal physics. McGraw-Hill, New York (1965)

    Google Scholar 

  9. Balakrishnan, V.: Elements of Nonequilibrium Statistical Mechanics. Ane Books India, New Delhi (2008)

    MATH  Google Scholar 

  10. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics (Applied Mathematical Sciences), vol. 38. Springer Verlag, New York (1992)

    Book  MATH  Google Scholar 

  11. de Oliveira, J.A., Bizão, R.A., Leonel, E.D.: Finding critical exponents for two-dimensional Hamiltonian maps. Phys. Rev. E 81, 046212 (2010)

    Article  ADS  Google Scholar 

  12. Leonel, E.D., de Oliveira, J.A., Saif, F.: Critical exponents for a transition from integrability to non-integrability via localization of invariant tori in the Hamiltonian system. J. Phys. A 44, 302001 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leonel, E.D., McClintock, P.V.E., da Silva, J.K.L.: Fermi–Ulam accelerator model under scaling analysis. Phys. Rev. Lett. 93, 014101 (2004)

    Article  ADS  Google Scholar 

  14. Oliveira, D.F.M., Silva, M.R., Leonel, E.D.: A symmetry break in energy distribution and a biased random walk behavior causing unlimited diffusion in a two dimensional mapping. Physica A 436, 909 (2015)

    Article  ADS  Google Scholar 

  15. Oliveira, J.A., Dettmann, C.P., Costa, D.R., Leonel, E.D.: Scaling invariance of the diffusion coefficient in a family of two-dimensional Hamiltonian mappings. Phys. Rev. E 87, 062904 (2015)

    Article  Google Scholar 

  16. Leonel, E.D., Penalva, J., Teixeira, R.M.N., Costa Filho, R.N., Silva, M.R., Oliveira, J.A.: A dynamical phase transition for a family of Hamiltonian mappings: a phenomenological investigation to obtain the critical exponents. Phys. Lett. A 379, 1808 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Chirikov, B.V.: A Universal Instability of Many-Dimensional Oscillator Systems, vol. 52, p. 263. Elsevier, New York (1979)

    Google Scholar 

  18. Lieberman, M.A., Lichtenberg, J.A.: Stochastic and adiabatic behavior of particles accelerated by periodic forces. Phys. Rev. A 5, 1852 (1971)

    Article  ADS  Google Scholar 

  19. da Silva, J.K.L., Ladeira, D.G., Leonel, E.D., McClintock, P.V.E., Kamphorst, S.O.: Scaling properties of the Fermi–Ulam accelerator model. Braz. J. Phys. 36, 700 (2006)

    Article  ADS  Google Scholar 

  20. Pustylnikov, L.D.: Stable and oscillating motions in non-autonomous dynamical systems. Trans. Mosc. Math. Soc. 2, 1 (1978)

    Google Scholar 

  21. Leonel, E.D., McClintock, P.V.E.: A hybrid Fermi–Ulam bouncer model. J. Phys. A 38, 823 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ladeira, D.G., Leonel, E.D.: Dynamical properties of a dissipative hybrid Fermi–Ulam-bouncer model. Chaos 17, 013119 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Oliveira, D.F.M., Bizão, R. A., Leonel, E. D.: Scaling properties of a hybrid Fermi–Ulam-bouncer model. In: Mathematical Problems in Engineering, Vol. 2009, Article ID 213857 (2009)

  24. Howard, J.E., Humphreys, J.: Nonmonotonic twist maps. Physica D 80, 256 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Livorati, A.L.P., et al.: Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi–Ulam model. Commun. Nonlinear Sci. Numer. Simul. 55, 225 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

EDL acknowledges support from CNPq (303707/2015-1), FAPESP (2012/23688-5), (2017/14414-2) and FUNDUNESP. CMK thanks to CAPES for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson D. Leonel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonel, E.D., Kuwana, C.M. An Investigation of Chaotic Diffusion in a Family of Hamiltonian Mappings Whose Angles Diverge in the Limit of Vanishingly Action. J Stat Phys 170, 69–78 (2018). https://doi.org/10.1007/s10955-017-1920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1920-x

Keywords

Navigation